Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 31(20): 32543-32553, 2023 Sep 25.
Article in English | MEDLINE | ID: mdl-37859055

ABSTRACT

An optical fiber sensor based on a hole-assisted dual-core fiber (HADCF) has been proposed and experimentally demonstrated for dual-parameter measurements. The dual-mode interferometer created uses the LP01 mode and LP11 mode in the suspended core of a specialist optical fiber, combined with a directional coupler formed by using the suspended core and the center core in a 16 mm long HADCF. Using this, the simultaneous measurement of salinity (due to the presence of NaCl) and temperature has been achieved through monitoring the interference dip and resonance dip. The sensitivities of the measurement of salinity and temperature are 190.7 pm/‰ and -188.2 pm/°C, respectively. The sensor developed has the advantages of simplicity of fabrication, a high level of integration and the potential for measurement of dual parameters, supporting its potential applications in marine environment measurements.

2.
Opt Lett ; 42(21): 4470-4473, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29088190

ABSTRACT

We propose a novel and simple in-fiber refractive index sensor based on resonant coupling, constructed by a short section of single eccentric hole-assisted dual-core fiber (SEHADCF) spliced between two single-mode fibers. The coupling characteristics of the SEHADCF are calculated numerically. The strong resonant coupling occurs when the fundamental mode of the center core phase-matches to that of the suspended core in the air hole. The effective refractive index of the fundamental mode of the suspended core can be obviously changed by injecting solution into the air hole. The responses of the proposed devices to the refractive index and temperature are experimentally measured. The refractive index sensitivity is 627.5 nm/refractive index unit in the refractive index range of 1.335-1.385. The sensor without solution filling is insensitive to temperature in the range of 30-90°C. The proposed refractive index sensor has outstanding advantages, such as simple fabrication, good mechanical strength, and excellent microfluidic channel, and will be of importance in biological detection, chemical analysis, and environment monitoring.

3.
Opt Express ; 25(12): 13278-13285, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28788863

ABSTRACT

We demonstrate theoretically and experimentally a high extinction ratio and compact size TE-pass polarizer made by a D-shaped fiber coated with a double graphene/PMMA stack. The light propagating in the core of the fiber can be efficiently coupled into the graphene sheet thanks to the giant enhancement of the modal evanescent field associated with the high refractive index graphene/PMMA cladding. The strong interaction between the light and graphene produces a large attenuation difference between modes with orthogonal polarizations, resulting in an improved extinction ratio and a reduced insertion loss due to the device compactness. A double graphene/PMMA stack coated polarizer with an extinction ratio of up to 36 dB and an insertion loss of 5 dB has been achieved when the device length is only 2.5 mm. The double graphene/PMMA stack has proved to be significantly better than single graphene/PMMA stack and bilayer graphene/PMMA structures, providing a polarizer with maximum extinction ratio of 44 dB for a length of 4 mm. The achieved results indicate that the proposed high extinction ratio polarizer is a promising candidate for novel in-fiber graphene-based devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...