Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Total Environ ; 945: 174019, 2024 Oct 01.
Article in English | MEDLINE | ID: mdl-38885713

ABSTRACT

Emerging evidence suggests that plants experiencing abiotic stress actively seek help from soil microbes. However, the empirical evidence supporting this strategy is limited, especially in response to heavy metal stress. We used integrated microbial community profiling and culture-based methods to investigate the interaction between mercury (Hg) stress, the entophytic root microbiome, and maize seedlings. The results of the pot experiment showed that soil Hg (20 mg/kg) strongly inhibited maize growth, indicating its strong phytotoxicity. Furthermore, Hg stress significantly altered the structure of the bacterial and fungal communities and enriched the potentially pathogenic Fusarium sp., suggesting that soil Hg stress may enhance the bio-stress induced by Fusarium species in maize. Additionally, soil Hg also led to the enrichment of beneficial bacterial members of Streptomyces, Lysobacter, and Sphingomonas (defined as differential species), which were also identified as keystone species in the Hg treatment by the analysis of co-occurrence networks. Therefore, it can be postulated that the members of Streptomyces, Lysobacter, and Sphingomonas function as stress-alleviating microbes. We successfully isolated the representatives of these stress-alleviating microbes. As expected, these strains mitigated the detrimental effects of Hg stess for the maize seedlings, suggesting that plants recruit the stress-alleviated microbiota to combat Hg stress. This study provides insights into the potential of manipulating the root microbiome to enhance plant growth in polluted environments.


Subject(s)
Mercury , Microbiota , Plant Roots , Soil Microbiology , Soil Pollutants , Zea mays , Mercury/toxicity , Zea mays/microbiology , Zea mays/drug effects , Soil Pollutants/toxicity , Plant Roots/microbiology , Microbiota/drug effects , Endophytes/physiology , Stress, Physiological
2.
Ecotoxicol Environ Saf ; 249: 114433, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-38321655

ABSTRACT

The ubiquitous presence of microplastics in aquatic environments is considered a global threat to aquatic organisms. Species of the genus Daphnia provide an important link between aquatic primary producers and consumers of higher trophic levels; furthermore, these organisms exhibit high sensitivity to various environmental pollutants. Hence, the biological effects of microplastics on Daphnia species are well documented. This paper reviews the latest research regarding the ecotoxicological effects of microplastics on Daphnia, including the: 1) responses of individual, population, and community attributes of Daphnia to microplastics; 2) influence of the physical and chemical properties of microplastics; and 3) joint toxicity of microplastics and other pollutants on responses of Daphnia. Our literature review found that the published literature does not provide sufficient evidence to reveal the risks of microplastics at the population and community levels. Furthermore, we emphasized that high-level analysis has more general implications for understanding how individual-level research can reveal the ecological hazards of microplastics on Daphnia. Based on this review, we suggest avenues for future research, including microplastic toxicology studies based on both omics-based and community-level methods, especially the latter.


Subject(s)
Microplastics , Water Pollutants, Chemical , Animals , Microplastics/toxicity , Plastics/toxicity , Daphnia , Ecotoxicology , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...