Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 30(11): 28640-28651, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36396764

ABSTRACT

Microbial fuel cells (MFCs) have been demonstrated as a renewable energy strategy to efficiently recover chemical energy stored in wastewater into clean electricity, yet the limited power density limits their practical application. Here, Fe-doped carbon and nitrogen (Fe@CN) nanoparticles were synthesized by a direct pyrolysis process, which was further decorated to fabricate Fe@CN carbon paper anode. The modified Fe@CN anode with a higher electrochemically active surface area was not only benefit for the adhesion of electrochemically active microorganisms (EAMs) and extracellular electron transfer (EET) between the anode and EAMs but also selectively enriched Geobacter, a typical EAMs species. Accordingly, the MFCs with Fe@CN anode successfully achieved a highest voltage output of 792.76 mV and a prolonged stable voltage output of 300 h based on the mixed culture feeding with acetate. Most importantly, the electroactive biofilms on Fe@CN anode achieved more content ratio of proteins to polysaccharides (1.40) in extracellular polymeric substances for the balance between EET and cell protection under a harsh environment. This work demonstrated the feasibility of development on anode catalysts for the elaboration of the catalytic principle about interface modification, which may contribute to the practical application of MFC in energy generation and wastewater treatment.


Subject(s)
Bioelectric Energy Sources , Geobacter , Carbon/chemistry , Electrons , Electricity , Biofilms , Electrodes
SELECTION OF CITATIONS
SEARCH DETAIL
...