Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Mater ; 36(25): e2400852, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38579292

ABSTRACT

Despite rapid advancements in the photovoltaic efficiencies of perovskite solar cells (PSCs), their operational stability remains a significant challenge for commercialization. This instability mainly arises from light-induced halide ion migration and subsequent oxidation into iodine (I2). The situation is exacerbated when considering the heat effects at elevated temperatures, leading to the volatilization of I2 and resulting in irreversible device degradation. Mercaptoethylammonium iodide (ESAI) is thus incorporated into perovskite as an additive to inhibit the oxidation of iodide anion (I-) and  the light-induced degradation pathway of FAPbI3→FAI+PbI2. Additionally, the formation of a thiol-disulfide/I--I2 redox pair within the perovskite film provides a dynamic mechanism for the continuous reduction of I2 under light and thermal stresses, facilitating the healing of iodine-induced degradations. This approach significantly enhances the operational stability of PSCs. Under the ISOS-L-3 testing protocol (maximum power point (MPP) tracking in an environment with relative humidity of ≈50% at ≈65 °C), the treated PSCs maintain 97% of their original power conversion efficieney (PCE) after 300 h of aging. In contrast, control devices exhibit almost complete degradation, primarily due to rapid thermal-induced I2 volatilization. These results demonstrate a promising strategy to overcome critical stability challenges in PSCs, particularly in scenarios involving thermal effects.

2.
Nanomicro Lett ; 16(1): 178, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38656466

ABSTRACT

This study presents experimental evidence of the dependence of non-radiative recombination processes on the electron-phonon coupling of perovskite in perovskite solar cells (PSCs). Via A-site cation engineering, a weaker electron-phonon coupling in perovskite has been achieved by introducing the structurally soft cyclohexane methylamine (CMA+) cation, which could serve as a damper to alleviate the mechanical stress caused by lattice oscillations, compared to the rigid phenethyl methylamine (PEA+) analog. It demonstrates a significantly lower non-radiative recombination rate, even though the two types of bulky cations have similar chemical passivation effects on perovskite, which might be explained by the suppressed carrier capture process and improved lattice geometry relaxation. The resulting PSCs achieve an exceptional power conversion efficiency (PCE) of 25.5% with a record-high open-circuit voltage (VOC) of 1.20 V for narrow bandgap perovskite (FAPbI3). The established correlations between electron-phonon coupling and non-radiative decay provide design and screening criteria for more effective passivators for highly efficient PSCs approaching the Shockley-Queisser limit.

3.
J Mol Med (Berl) ; 102(5): 599-615, 2024 05.
Article in English | MEDLINE | ID: mdl-38441598

ABSTRACT

Phase separation, also known as biomolecule condensate, participates in physiological processes such as transcriptional regulation, signal transduction, gene expression, and DNA damage repair by creating a membrane-free compartment. Phase separation is primarily caused by the interaction of multivalent non-covalent bonds between proteins and/or nucleic acids. The strength of molecular multivalent interaction can be modified by component concentration, the potential of hydrogen, posttranslational modification, and other factors. Notably, phase separation occurs frequently in the cytoplasm of mitochondria, the nucleus, and synapses. Phase separation in vivo is dynamic or stable in the normal physiological state, while abnormal phase separation will lead to the formation of biomolecule condensates, speeding up the disease progression. To provide candidate suggestions for the clinical treatment of nervous system diseases, this review, based on existing studies, carefully and systematically represents the physiological roles of phase separation in the central nervous system and its pathological mechanism in neurodegenerative diseases.


Subject(s)
Central Nervous System , Neurodegenerative Diseases , Humans , Central Nervous System/metabolism , Animals , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Biomolecular Condensates/metabolism , Biomolecular Condensates/chemistry , Mitochondria/metabolism , Phase Separation
4.
Adv Mater ; : e2311473, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38224961

ABSTRACT

This review outlines the rapid evolution of flexible perovskite solar cells (f-PSCs) to address the urgent need for alternative energy sources, highlighting their impressive power conversion efficiency, which increases from 2.62% to over 24% within a decade. The unique optoelectronic properties of perovskite materials and their inherent mechanical flexibilities instrumental in the development of f-PSCs are examined. Various strategies proposed for material modification and device optimization significantly enhance efficiency and bending durability. The transition from small-scale devices to large-area photovoltaic modules for diverse applications is discussed in addition to the challenges and innovative solutions related to film uniformity and environmental stability. This review provides succinct yet comprehensive insights into the development of f-PSCs, paving the way for their integration into various applications and highlighting their potential in the renewable energy landscape.

5.
Adv Mater ; 36(6): e2309208, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38009812

ABSTRACT

Although the FAPbI3 perovskite system exhibits an impressive optoelectronic characteristic and thermal stability because of its energetically unstable black phase at room temperature, it is considerably challenging to attain a controllable and oriented nucleation of α-FAPbI3 . To overcome this challenge, a 2D perovskite with a released inorganic octahedral distortion designed by weakening the hydrogen interactions between the organic interlayer and [PbI6 ]4- octahedron is presented in this study. A highly matched heterointerface can be formed between the (002) facet of the 2D structure and the (100) crystal plane of the cubic α-FAPbI3 , thereby lowering the crystallization energy and inducing a heterogeneous nucleation of α-FAPbI3 . This "epitaxial growth" mechanism results form the highly preferred crystallographic orientation of the (100) facets, improved crystal quality and film uniformity, substantially increased charge transporting characteristics, and suppressed nonradiative recombination losses. An impressive power conversion efficiency (PCE) of 25.4% (certified 25.2%) is achieved using target PSCs, which demonstrates outstanding ambient and operational stability. The feasibility of this strategy is proved for the scalable deposition of homogeneous and high-quality perovskite thin films by demonstrating the remarkably increased PCE of the large-area perovskite solar module, from 18.2% to 20.1%.

6.
Adv Mater ; 36(13): e2309998, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38108580

ABSTRACT

While significant advancements in power conversion efficiencies (PCEs) of α-FAPbI3perovskite solar cells (PSCs) have been made, attaining controllable perovskite crystallization is still a considerable hurdle. This challenge stems from the initial formation of δ-FAPbI3, a more energetically stable phase than the desired black α-phase, during film deposition. This disrupts the heterogeneous nucleation of α-FAPbI3, causing the formation of mixed phases and defects. To this end, polarity engineering using molecular additives, specifically ((methyl-sulfonyl)phenyl)ethylamines (MSPEs) are introduced. The findings reveal that the interaction of PbI2-MSPEs-FAI intermediates is enhanced with the increased polarity of MSPEs, which in turn expedites the nucleation of α-FAPbI3. This leads to the development of high-quality α-FAPbI3 films, characterized by vertical crystal orientation and reduced residual stresses. Additionally, the increased dipole moment of MSPE at perovskite grain boundaries attenuates Coulomb attractions among charged defects and screens carrier capture process, thereby diminishing non-radiative recombination. Utilizing these mechanisms, PSCs treated with highly polar 2-(4-MSPE) achieve an impressive PCE of 25.2% in small-area devices and 20.5% in large-area perovskite solar modules (PSMs) with an active area of 70 cm2. These results demonstrate the effectiveness of this strategy in achieving controllable crystallization of α-FAPbI3, paving the way for scalable-production of high-efficiency PSMs.

7.
J Integr Neurosci ; 22(6): 156, 2023 Oct 30.
Article in English | MEDLINE | ID: mdl-38176919

ABSTRACT

BACKGROUND: The inflammation and immune response contribute to ischemic stroke pathology. Damaged brain cells release inflammatory substances to activate the immune system in the acute phase of stroke, including altering the interferon signaling pathway. However, the involvement of histone deacetylation in stroke remains unclear. METHODS: To investigate whether histone deacetylation modulation could regulate the interferon signaling pathway and mediate the pathogenic changes after stroke, the middle cerebral artery occlusion (MCAO) mouse model was treated with histone deacetylase 3 (HDAC3) inhibitor and RGFP966. Additionally, a series of approaches, including middle cerebral artery occlusion (MCAO), real-time polymerase chain reaction (PCR), western blot, 2,3,5-triphenyltetrazolium chloride (TTC) staining, behavioral experiments, and confocal imaging were utilized. RESULTS: It is observed that RGFP966 pretreatment could lead to better outcomes in the MCAO mouse model, including the decrease of infarction volumes, the amelioration of post-stroke anxiety-like behavior, and the relief of inflammatory responses. Furthermore, we found that RGFP966 could counteract the hyperactivation of the interferon signaling pathway and the excessive expression of Z-DNA Binding Protein 1 (ZBP1) in microglia. CONCLUSIONS: We demonstrated a novel mechanism that HDAC3 inhibition could ameliorate the pathological injury after ischemic stroke by downregulating the ZBP1/phosphorylated Interferon Regulatory Factor 3 (p-IRF3) pathway. Thus, these data provide a new promising target for therapies for ischemic stroke.


Subject(s)
Ischemic Stroke , Stroke , Mice , Animals , Infarction, Middle Cerebral Artery , Interferons , Histones , Disease Models, Animal
SELECTION OF CITATIONS
SEARCH DETAIL
...