Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Med ; 25(5): 767-775, 2019 05.
Article in English | MEDLINE | ID: mdl-31011208

ABSTRACT

Anti-tumor immunity is driven by self versus non-self discrimination. Many immunotherapeutic approaches to cancer have taken advantage of tumor neoantigens derived from somatic mutations. Here, we demonstrate that gene fusions are a source of immunogenic neoantigens that can mediate responses to immunotherapy. We identified an exceptional responder with metastatic head and neck cancer who experienced a complete response to immune checkpoint inhibitor therapy, despite a low mutational load and minimal pre-treatment immune infiltration in the tumor. Using whole-genome sequencing and RNA sequencing, we identified a novel gene fusion and demonstrated that it produces a neoantigen that can specifically elicit a host cytotoxic T cell response. In a cohort of head and neck tumors with low mutation burden, minimal immune infiltration and prevalent gene fusions, we also identified gene fusion-derived neoantigens that generate cytotoxic T cell responses. Finally, analyzing additional datasets of fusion-positive cancers, including checkpoint-inhibitor-treated tumors, we found evidence of immune surveillance resulting in negative selective pressure against gene fusion-derived neoantigens. These findings highlight an important class of tumor-specific antigens and have implications for targeting gene fusion events in cancers that would otherwise be less poised for response to immunotherapy, including cancers with low mutational load and minimal immune infiltration.


Subject(s)
Antigens, Neoplasm/genetics , Immunotherapy/methods , Neoplasms/immunology , Neoplasms/therapy , T-Lymphocytes, Cytotoxic/immunology , Chromosomal Proteins, Non-Histone/genetics , Chromosomal Proteins, Non-Histone/immunology , Gene Fusion , Head and Neck Neoplasms/genetics , Head and Neck Neoplasms/immunology , Head and Neck Neoplasms/therapy , Humans , NFI Transcription Factors/genetics , NFI Transcription Factors/immunology , Neoplasms/genetics , Nuclear Proteins/genetics , Nuclear Proteins/immunology , Oncogene Proteins/genetics , Oncogene Proteins/immunology , Poly-ADP-Ribose Binding Proteins/genetics , Poly-ADP-Ribose Binding Proteins/immunology , Programmed Cell Death 1 Receptor/antagonists & inhibitors , Proto-Oncogene Proteins c-myb/genetics , Proto-Oncogene Proteins c-myb/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Squamous Cell Carcinoma of Head and Neck/genetics , Squamous Cell Carcinoma of Head and Neck/immunology , Squamous Cell Carcinoma of Head and Neck/therapy , Whole Genome Sequencing
2.
Mol Plant Microbe Interact ; 19(12): 1302-10, 2006 Dec.
Article in English | MEDLINE | ID: mdl-17153914

ABSTRACT

Phytophthora spp. are serious pathogens that threaten numerous cultivated crops, trees, and natural vegetation worldwide. The soybean pathogen P. sojae has been developed as a model oomycete. Here, we report a bacterial artificial chromosome (BAC)-based, integrated physical map of the P. sojae genome. We constructed two BAC libraries, digested 8,681 BACs with seven restriction enzymes, end labeled the digested fragments with four dyes, and analyzed them with capillary electrophoresis. Fifteen data sets were constructed from the fingerprints, using individual dyes and all possible combinations, and were evaluated for contig assembly. In all, 257 contigs were assembled from the XhoI data set, collectively spanning approximately 132 Mb in physical length. The BAC contigs were integrated with the draft genome sequence of P. sojae by end sequencing a total of 1,440 BACs that formed a minimal tiling path. This enabled the 257 contigs of the BAC map to be merged with 207 sequence scaffolds to form an integrated map consisting of 79 superscaffolds. The map represents the first genome-wide physical map of a Phytophthora sp. and provides a valuable resource for genomics and molecular biology research in P. sojae and other Phytophthora spp. In one illustration of this value, we have placed the 350 members of a superfamily of putative pathogenicity effector genes onto the map, revealing extensive clustering of these genes.


Subject(s)
Chromosomes, Artificial, Bacterial , Contig Mapping , Genome , Phytophthora/genetics , Contig Mapping/standards , DNA Fingerprinting , Genomic Library , Multigene Family
SELECTION OF CITATIONS
SEARCH DETAIL
...