Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 14(4): e11252, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38601856

ABSTRACT

The "pace-of-life" syndrome (POLS) framework can encompass multiple personality axes that drive important functional behaviors (e.g., foraging behavior) and that co-vary with multiple life history traits. Food hoarding is an adaptive behavior important for an animal's ability to adapt to seasonal fluctuations in food availability. However, the empirical evidence for the relationships between animal personality and hoarding behavior remains unclear, including its fitness consequences in the POLS framework. In this study, the Mongolian gerbil (Meriones unguiculatus), a social rodent, was used as a model system to investigate how boldness or shyness is associated with food hoarding strategies during the food hoarding season and their impact on over-winter survival and reproduction at both individual and group levels. The results of this study showed that, compared with shy gerbils, bold gerbils had a lower effort foraging strategy during the food hoarding season and exhibited lower over-winter survival rates. However, bold-shy personality differences had no effect on over-winter reproduction. These findings suggest that the personality is a crucial factor influencing the foraging strategy during the food hoarding season in Mongolian gerbils. Personality may be related to energy states or the reaction to environmental changes (e.g., predation risk and food availability) in bold or shy social animals. These results reflect animal life history trade-offs between current versus future reproduction and reproduction versus self-maintenance, thereby helping Mongolian gerbils in adapting to seasonal fluctuations in their habitat.

2.
Fish Shellfish Immunol ; 142: 109114, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37758097

ABSTRACT

Abalone Haliotis discus hannai (initial weight: 38.79 ± 0.70 g) was used as the experimental animal in a 105-day feeding trial to investigate the influence of dietary bile acids levels on the growth, anti-oxidation, immune response and intestinal microbiota. Six isonitrogenous and isolipidic diets were prepared by adding 0 (control group), 15, 30, 60, 120 and 240 mg/kg of bile acids, respectively (named BA0, BA15, BA30, BA60, BA120 and BA240, respectively). It was found that survival of abalone between groups had no significant difference (P > 0.05). Compared to the control, significant improvements in weight gain rate (WGR) were observed in the groups of BA30 and BA60 (P < 0.05). Based on WGR, the broken line regression model analysis showed that the optimum demand for dietary bile acids for abalone was 35.47 mg/kg. Dietary bile acids increased the total anti-oxidative capacity and activities of catalase, superoxide dismutase, lysozyme and alkaline phosphatase, meanwhile decreased the content of malondialdehyde, alanine aminotransferase and aspartate aminotransferase activities in the cell-free hemolymph (P < 0.05). When bile acids were added to the diets, mRNA levels of genes related to pro-inflammatory factors and apoptosis in the digestive gland were down-regulated (P < 0.05). In contrast, the expression of genes related to anti-oxidation was significantly up-regulated (P < 0.05). The Firmicutes, Actinobacteriota and Proteobacteria were the most abundant phyla in intestine. And dietary bile acids significantly decreased the abundance of Actinobacteria and increased the abundance of Firmicutes (P < 0.05). In conclusion, supplementation of dietary bile acids within 120 mg/kg significantly increased the growth of abalone. The 34.62 mg/kg of dietary bile acids significantly increased the anti-oxidative capacity of abalone. Appropriate levels of dietary bile acids (34.62-61.75 mg/kg) promote the immunity of abalone. Application of appropriate levels of bile acids in diets (34.62 mg/kg) changed the intestinal microbiota and promoted the intestinal health of abalone.


Subject(s)
Gastrointestinal Microbiome , Gastropoda , Animals , Diet/veterinary , Intestines , Oxidation-Reduction
3.
Sci China Life Sci ; 66(12): 2851-2861, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37505431

ABSTRACT

Prime editing (PE) is a recent gene editing technology that can mediate insertions or deletions and all twelve types of base-to-base conversions. However, its low efficiency hampers the application in creating novel breeds and biomedical models, especially in pigs and other important farm animals. Here, we demonstrate that the pig genome is editable using the PE system, but the editing efficiency was quite low as expected. Therefore, we aimed to enhance PE efficiency by modulating both exogenous PE tools and endogenous pathways in porcine embryonic fibroblasts (PEFs). First, we modified the pegRNA by extending the duplex length and mutating the fourth thymine in a continuous sequence of thymine bases to cytosine, which significantly enhanced PE efficiency by improving the expression of pegRNA and targeted cleavage. Then, we targeted SAMHD1, a deoxynucleoside triphosphate triphosphohydrolase (dNTPase) that impedes the reverse transcription process in retroviruses, and found that treatment with its inhibitor, cephalosporin C zinc salt (CPC), increased PE efficiency up to 29-fold (4-fold on average), presumably by improving the reverse transcription process of Moloney murine leukemia virus reverse transcriptase (M-MLV RT) in the PE system. Moreover, PE efficiency was obviously improved by treatment with a panel of histone deacetylase inhibitors (HDACis). Among the four HDACis tested, panobinostat was the most efficient, with an efficiency up to 122-fold (7-fold on average), partly due to the considerable HDACi-mediated increase in transgene expression. In addition, the synergistic use of the three strategies further enhanced PE efficiency in PEFs. Our study provides novel approaches for optimization of the PE system and broadens the application scope of PE in agriculture and biomedicine.


Subject(s)
Animals, Domestic , Thymine , Mice , Animals , Swine , Transgenes , Agriculture , Cytosine , Gene Editing , Histone Deacetylase Inhibitors , CRISPR-Cas Systems
4.
Fish Shellfish Immunol ; 121: 39-52, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34983003

ABSTRACT

The present study was conducted to investigate the effects of dietary recombinant human lysozyme (RHL) on the growth, immune response, anti-oxidative activity, intestinal morphology, intestinal microflora and disease resistance of shrimp Litopenaeus vannamei. Shrimps with an initial body weight of 2.36 ± 0.02 g were fed diets supplemented with 0 (control group, R0), 0.0025% (R1), 0.005% (R2), 0.01% (R3), 0.02% (R4) and 0.04% (R5) of RHL, respectively. After a 10-week feeding trial, the final body weight, survival rate, weight gain ratio and protein efficiency rate of the shrimps in dietary RHL supplemented groups were significantly higher than that in the control group, while feed conversion ratio was significantly lower (P < 0.05). The total haemocyte count, total anti-oxidative capacity, respiratory burst, activities of phagocytosis, nitric oxide synthase, phenol oxidase and lysozyme in serum were significantly higher in dietary RHL supplemented groups than those in the control group (P < 0.05). Meanwhile, the intestinal pile height and wall thickness were significantly higher in dietary RHL supplemented groups than those in the control group (P < 0.05). Dietary RHL significantly improved the expressions of immune-related genes in gill, such as lipopolysaccharide-ß-glucan binding protein, Toll, immune deficiency, heat shock protein 70 and Crustin (P < 0.05). The abundance of proteobacteria and bacteroidetes in intestine was higher, while the abundance of firmicutes and cyanobacteria was lower than those in the control group at the phylum level. In addition, dietary RHL supplementation significantly improved the protective ability of shrimp against V. parahaemolyticus infection (P < 0.05). Based on the broken-line model analysis for weight gain ratio after the feeding trial, the optimal level of dietary RHL supplementation for shrimp was estimated to be 0.006375%.


Subject(s)
Diet , Disease Resistance , Immunity, Innate , Muramidase/administration & dosage , Penaeidae , Animals , Body Weight , Diet/veterinary , Dietary Supplements , Humans , Intestines/growth & development , Intestines/microbiology , Penaeidae/growth & development , Penaeidae/immunology , Weight Gain
5.
ISME J ; 14(10): 2625-2645, 2020 10.
Article in English | MEDLINE | ID: mdl-32632263

ABSTRACT

Many small mammals engage in coprophagy, or the behavior of consuming feces, as a means to meet nutritional requirements when feeding on low-quality foods. In addition to nutritional benefits, coprophagy may also help herbivores retain necessary gut microbial diversity and function, which may have downstream physiological effects, such as maintaining energy balance and cognitive function. Here, we used collars to prevent Brandt's vole (Lasiopodomys brandtii) from engaging in coprophagy and monitored changes in microbial community structure, energy metabolism, and cognitive performance. In this research, we found that coprophagy prevention decreased alpha diversity of the gut microbiota, and altered proportions of microbial taxa such as Bacteroidetes, Firmicutes, and Oscillospira. Preventing coprophagy resulted in a reduced body mass, and increased food intake. Importantly, coprophagy prevention decreased vole cognitive behavior and altered levels of neurotransmitters in brain. Daily acetate administration was able to reverse some of the coprophagy prevention-induced changes in microbiota composition, metabolism, neurochemistry, and cognitive behavior. These findings identify the functional importance of coprophagy behavior and interactions between the gut microbiota, energy metabolism, and neurological function. Our results suggest that coprophagy contributes to stabilizing the gut microbiota, promoting microbial metabolism, maintaining host energy balance and, consequently, altering cognitive performance.


Subject(s)
Gastrointestinal Microbiome , Neurochemistry , Animals , Cognition , Coprophagia , Mammals
6.
J Steroid Biochem Mol Biol ; 198: 105602, 2020 04.
Article in English | MEDLINE | ID: mdl-31987886

ABSTRACT

Obesity has become a growing concern around the world. The purpose of this study was to investigate the potential benefit of Bifidobacterium pseudolongum (B. pseudolongum) on obesity, gut microbiota, and its physiological mechanism. The obese mice model was established with a high-fat diet (HFD), and the treatment were used the strain B. pseudolongum. We investigated the changes in fat content, plasma metabolites and gut microbiota on obese mice and B. pseudolongum treated obese mice. We found that B. pseudolongum treatment significantly decreased the body mass (about 12 %), plasma triglycerides (about 12.4 %), gross energy intake (about 12.8 %), and visceral fat (about 26.5 %) in obese mice. Further, High-throughput pyrosequencing of the 16S rRNA demonstrated that B. pseudolongum treatment markedly recovered the gut microbiota dysbiosis in obese mice, including the diversity of microbiota and the ratio of Firmicutes to Bacteroidetes. B. pseudolongum treatment increased the abundance of the bacterial genus Butyricimonas and Bifidobacterium. Therefore, B. pseudolongum may have therapeutic potential for the treatment of diet-induced obesity (DIO). B. pseudolongum treatment could change host gut microbiota and provide benefits to host digestive processes that mitigate metabolic diseases.


Subject(s)
Bifidobacterium/physiology , Diet, High-Fat/adverse effects , Gastrointestinal Microbiome , Obesity/blood , Obesity/therapy , Triglycerides/blood , Animals , Male , Mice , Mice, Inbred C57BL , Obesity/etiology , Obesity/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...