Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Oncogene ; 36(31): 4381-4392, 2017 08.
Article in English | MEDLINE | ID: mdl-28368419

ABSTRACT

ΔNp63α is a critical mediator of epithelial development and stem cell function in a variety of tissues including the skin and breast, while overexpression of ΔNp63α acts as an oncogene to drive tumor formation and cancer stem cell properties in squamous cell carcinoma. However, with regards to the prostate, while ΔNp63α is expressed in the basal stem cells of the mature gland, during adenocarcinoma development, its expression is lost and its absence is used to clinically diagnose the malignant state. Surprisingly, here we identify a sub-population of bone metastatic prostate cancer cells in the PC3 cell line that express ΔNp63α. Interestingly, we discovered that ΔNp63α favors adhesion and stem-like growth of these cells in the bone microenvironment. In addition, we show that these properties require expression of the target gene CD82. Together, this work uncovers a population of bone metastatic prostate cancer cells that express ΔNp63α, and provides important information about the mechanisms of bone metastatic colonization. Finally, we identify metastasis-promoting properties for the tetraspanin family member CD82.


Subject(s)
Bone Neoplasms/secondary , Kangai-1 Protein/physiology , Prostatic Neoplasms/pathology , Transcription Factors/physiology , Tumor Suppressor Proteins/physiology , Animals , Cell Adhesion , Cell Line, Tumor , Gene Expression Regulation , Humans , Male , Mice , Mice, Inbred C57BL
2.
Oncogene ; 33(17): 2204-14, 2014 Apr 24.
Article in English | MEDLINE | ID: mdl-23708657

ABSTRACT

Prostate cancer (PCa) is one of the major public health problems in Western countries. Recently, the TMPRSS2:ERG gene fusion, which results in the aberrant expression of the transcription factor ERG, has been shown to be the most common gene rearrangement in PCa. Previous studies have determined the contributions of this fusion in PCa disease initiation and/or progression in vitro and in vivo. In this study on TMPRSS2:ERG regulation in PCa, we used an androgen receptor and TMPRSS2:ERG fusion double-negative PCa cell model: PC3c. In three cell clones with different TMPRSS2:ERG expression levels, ectopic expression of the fusion resulted in significant induction of cell migration and invasion in a dose-dependent manner. In agreement with this phenotype, high-throughput microarray analysis revealed that a set of genes, functionally associated with cell motility and invasiveness, were deregulated in a dose-dependent manner in TMPRSS2:ERG-expressing cells. Importantly, we identified increased MMP9 (Metalloproteinase 9) and PLXNA2 (Plexin A2) expression in TMPRSS2:ERG-positive PCa samples, and their expression levels were significantly correlated with ERG expression in a PCa cohort. In line with these findings, there was evidence that TMPRSS2:ERG directly and positively regulates MMP9 and PLXNA2 expression in PC3c cells. Moreover, PLXNA2 upregulation contributed to TMPRSS2:ERG-mediated enhancements of PC3c cell migration and invasion. Furthermore, and importantly, PLXNA2 expression was upregulated in metastatic PCa tumors compared with localized primary PCa tumors. This study provides novel insights into the role of the TMPRSS2:ERG fusion in PCa metastasis.


Subject(s)
Matrix Metalloproteinase 9/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins, Fusion/metabolism , Prostatic Neoplasms/metabolism , Receptors, Cell Surface/metabolism , Cell Line, Tumor , Cell Movement , Cell Proliferation , Gene Expression Regulation , Humans , Lymphatic Metastasis , Male , Oncogene Proteins, Fusion/genetics , Phenotype , Prostatic Neoplasms/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL
...