Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 925
Filter
1.
Biochem Pharmacol ; : 116327, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38823457

ABSTRACT

With intensified aging of the society, the increased age-associated diseases that threatens the quality of life for the elderly. Adipose tissue, a vital energy reservoir with endocrine functions, is one of the most vulnerable tissues in aging, which in turn influence systematic aging process, including metabolic dysfunction. However, the underlying mechanism are still poorly understood. In this study, we found that NRG4, a novel adipokine, is obviously decreased in adipocyte tissues and serums during aging. Moreover, delivered recombinant NRG4 protein (rNRG4) into aged mice can ameliorate age-associated insulin resistance, glucose disorders and other metabolic disfunction. In addition, rNRG4 treatment improves age-associated hepatic steatosis and sarcopenia, accompanied with altered gene signatures. Together, these results indicate that NRG4 plays a key role in the aging process and is a therapeutic target for the treatment of age-associated metabolic dysfunction.

2.
Ultrason Sonochem ; 107: 106927, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38820934

ABSTRACT

A novel technique was proposed for processing silkworm pupae by combining plasma- activated water (PAW) with ultrasound (US). The microbial diversity and quality characteristics of the silkworm pupae were also evaluated. The results of the microbial diversity analysis indicated that PAW combined with US treatment significantly reduced the relative abundance of Streptococcaceae, Leuconostocaceae, and Acetobacteraceae from 32%, 18% and 16% to 27%, 11% and 11%, respectively. Microstructural analysis demonstrated that the collapse of the internal structure of chitin in silkworm pupae facilitated the release of nutrients and flavour compounds including fatty acids, water-soluble proteins (WSP), amino acids, phenolics, and volatile compounds. Furthermore, the increase in antioxidant capacity and the decrease in catalase activity and malondialdehyde content confirmed the mechanism of quality change. These findings provide new insights into the possible mechanism of PAW combined with US to improve the quality of edible insects.

3.
Small ; : e2402105, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38727184

ABSTRACT

The scarcity of fresh water necessitates sustainable and efficient water desalination strategies. Solar-driven steam generation (SSG), which employs solar energy for water evaporation, has emerged as a promising approach. Graphene oxide (GO)-based membranes possess advantages like capillary action and Marangoni effect, but their stacking defects and dead zones of flexible flakes hinders efficient water transportation, thus the evaporation rate lag behind unobstructed-porous 3D evaporators. Therefore, fundamental mass-transfer approach for optimizing SSG evaporators offers new horizons. Herein, a universal multi-force-fields-based method is presented to regularize membrane channels, which can mechanically eliminate inherent interlayer stackings and defects. Both characterization and simulation demonstrate the effectiveness of this approach across different scales and explain the intrinsic mechanism of mass-transfer enhancement. When combined with a structurally optimized substrate, the 4Laponite@GO-1 achieves evaporation rate of 2.782 kg m-2 h-1 with 94.48% evaporation efficiency, which is comparable with most 3D evaporators. Moreover, the optimized membrane exhibits excellent cycling stability (10 days) and tolerance to extreme conditions (pH 1-14, salinity 1%-15%), verifies the robust structural stability of regularized channels. This optimization strategy provides simple but efficient way to enhance the SSG performance of GO-based membranes, facilitating their extensive application in sustainable water purification technologies.

4.
Food Funct ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768319

ABSTRACT

Objectives: We conducted an assessment to explore potential associations of the dietary oxidative balance score (DOBS), cardiovascular disease (CVD), with all-cause mortality among older adults, while also exploring the potential moderating effect of DOBS on the relationship between CVD and mortality. Methods: This study included 9059 older adults (≥60 years) from NHANES 2003-2014. Determination of DOBS involves scoring the combination of 16 nutrients, comprising 2 pro-oxidants and 14 anti-oxidants. Cox regression analysis was used to assess the individual associations of CVD and DOBS status with all-cause mortality. Additional evaluations were conducted to assess the combined impact of CVD and DOBS status on mortality, and the interaction were estimated. Sensitivity analyses were performed by excluding participants who died within two years. Results: The findings demonstrated a significant association between pro-oxidant diet (lower DOBS) or CVD and elevated mortality risk among older adults. It is also suggested that older adults with CVD and pro-oxidant diet exhibit the highest risk of all-cause mortality (HR = 1.96, 95% CI: 1.64-2.34), compared to individuals without CVD who follow an antioxidant-rich diet. Further stratified analysis based on CVD status revealed a different pattern in the correlation between pro-oxidant diet and all-cause mortality risk (P for interaction = 0.015). The results of sensitivity analysis were consistent. Conclusions: The lower levels of DOBS and/or CVD were significantly associated with an increased risk of all-cause mortality in older adults. Notably, we also identified a significant interaction between DOBS and CVD affecting all-cause mortality.

5.
Circ Res ; 2024 May 21.
Article in English | MEDLINE | ID: mdl-38770652

ABSTRACT

BACKGROUND: Pathogenic concepts of right ventricular (RV) failure in pulmonary arterial hypertension focus on a critical loss of microvasculature. However, the methods underpinning prior studies did not take into account the 3-dimensional (3D) aspects of cardiac tissue, making accurate quantification difficult. We applied deep-tissue imaging to the pressure-overloaded RV to uncover the 3D properties of the microvascular network and determine whether deficient microvascular adaptation contributes to RV failure. METHODS: Heart sections measuring 250-µm-thick were obtained from mice after pulmonary artery banding (PAB) or debanding PAB surgery and properties of the RV microvascular network were assessed using 3D imaging and quantification. Human heart tissues harvested at the time of transplantation from pulmonary arterial hypertension cases were compared with tissues from control cases with normal RV function. RESULTS: Longitudinal 3D assessment of PAB mouse hearts uncovered complex microvascular remodeling characterized by tortuous, shorter, thicker, highly branched vessels, and overall preserved microvascular density. This remodeling process was reversible in debanding PAB mice in which the RV function recovers over time. The remodeled microvasculature tightly wrapped around the hypertrophied cardiomyocytes to maintain a stable contact surface to cardiomyocytes as an adaptation to RV pressure overload, even in end-stage RV failure. However, microvasculature-cardiomyocyte contact was impaired in areas with interstitial fibrosis where cardiomyocytes displayed signs of hypoxia. Similar to PAB animals, microvascular density in the RV was preserved in patients with end-stage pulmonary arterial hypertension, and microvascular architectural changes appeared to vary by etiology, with patients with pulmonary veno-occlusive disease displaying a lack of microvascular complexity with uniformly short segments. CONCLUSIONS: 3D deep tissue imaging of the failing RV in PAB mice, pulmonary hypertension rats, and patients with pulmonary arterial hypertension reveals complex microvascular changes to preserve the microvascular density and maintain a stable microvascular-cardiomyocyte contact. Our studies provide a novel framework to understand microvascular adaptation in the pressure-overloaded RV that focuses on cell-cell interaction and goes beyond the concept of capillary rarefaction.

6.
Signal Transduct Target Ther ; 9(1): 131, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740785

ABSTRACT

Almost all the neutralizing antibodies targeting the receptor-binding domain (RBD) of spike (S) protein show weakened or lost efficacy against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged or emerging variants, such as Omicron and its sub-variants. This suggests that highly conserved epitopes are crucial for the development of neutralizing antibodies. Here, we present one nanobody, N235, displaying broad neutralization against the SARS-CoV-2 prototype and multiple variants, including the newly emerged Omicron and its sub-variants. Cryo-electron microscopy demonstrates N235 binds a novel, conserved, cryptic epitope in the N-terminal domain (NTD) of the S protein, which interferes with the RBD in the neighboring S protein. The neutralization mechanism interpreted via flow cytometry and Western blot shows that N235 appears to induce the S1 subunit shedding from the trimeric S complex. Furthermore, a nano-IgM construct (MN235), engineered by fusing N235 with the human IgM Fc region, displays prevention via inducing S1 shedding and cross-linking virus particles. Compared to N235, MN235 exhibits varied enhancement in neutralization against pseudotyped and authentic viruses in vitro. The intranasal administration of MN235 in low doses can effectively prevent the infection of Omicron sub-variant BA.1 and XBB in vivo, suggesting that it can be developed as a promising prophylactic antibody to cope with the ongoing and future infection.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , COVID-19 , Epitopes , Immunoglobulin M , SARS-CoV-2 , Single-Domain Antibodies , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/chemistry , Humans , Single-Domain Antibodies/immunology , Single-Domain Antibodies/genetics , Single-Domain Antibodies/chemistry , Single-Domain Antibodies/pharmacology , Epitopes/immunology , Epitopes/genetics , Epitopes/chemistry , Animals , COVID-19/immunology , COVID-19/virology , Antibodies, Viral/immunology , Antibodies, Viral/chemistry , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/genetics , Immunoglobulin M/immunology , Immunoglobulin M/genetics , Mice , Protein Domains , Cryoelectron Microscopy
7.
J Am Chem Soc ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38782032

ABSTRACT

The synthesis and characterization of a series of polyantimony anionic clusters are reported. The products [(NbCp)2Sb10]2-, [MSb13]3- (M = Ru/Fe), and [MSb15]3- (M = Ru/Fe) were isolated as either K(18-crown-6) or K([2.2.2]-crypt) salts. The Sb10 ring contained in the [(NbCp)2Sb10]2- cluster can be viewed as an extension of two envelope-like cyclo-Sb5 units and represents by far the largest monocyclic all-antimony species. The clusters [MSb13]3- and [MSb15]3- (M = Ru/Fe) illustrate the variability of crown-like Sb8 ring motifs and reveal the fusion of different antimony fragments featuring unique Sb-Sb chain-like units. The reported synthetic approaches involve the fabrication of a variety of distinctive polyantimony anionic clusters, enhancing our understanding of the coordination chemistry of heavier group 15 elements.

8.
BMC Plant Biol ; 24(1): 445, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38778277

ABSTRACT

BACKGROUND: Acer is a taxonomically intractable and speciose genus that contains over 150 species. It is challenging to distinguish Acer species only by morphological method due to their abundant variations. Plastome and nuclear ribosomal DNA (nrDNA) sequences are recommended as powerful next-generation DNA barcodes for species discrimination. However, their efficacies were still poorly studied. The current study will evaluate the application of plastome and nrDNA in species identification and perform phylogenetic analyses for Acer. RESULT: Based on a collection of 83 individuals representing 55 species (c. 55% of Chinese species) from 13 sections, our barcoding analyses demonstrated that plastomes exhibited the highest (90.47%) species discriminatory power among all plastid DNA markers, such as the standard plastid barcodes matK + rbcL + trnH-psbA (61.90%) and ycf1 (76.19%). And the nrDNA (80.95%) revealed higher species resolution than ITS (71.43%). Acer plastomes show abundant interspecific variations, however, species identification failure may be due to the incomplete lineage sorting (ILS) and chloroplast capture resulting from hybridization. We found that the usage of nrDNA contributed to identifying those species that were unidentified by plastomes, implying its capability to some extent to mitigate the impact of hybridization and ILS on species discrimination. However, combining plastome and nrDNA is not recommended given the cytonuclear conflict caused by potential hybridization. Our phylogenetic analysis covering 19 sections (95% sections of Acer) and 128 species (over 80% species of this genus) revealed pervasive inter- and intra-section cytonuclear discordances, hinting that hybridization has played an important role in the evolution of Acer. CONCLUSION: Plastomes and nrDNA can significantly improve the species resolution in Acer. Our phylogenetic analysis uncovered the scope and depth of cytonuclear conflict in Acer, providing important insights into its evolution.


Subject(s)
Acer , DNA Barcoding, Taxonomic , DNA, Plant , DNA, Ribosomal , Phylogeny , Acer/genetics , DNA Barcoding, Taxonomic/methods , DNA, Ribosomal/genetics , DNA, Plant/genetics , Plastids/genetics , Species Specificity , Cell Nucleus/genetics
9.
Virol Sin ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38789039

ABSTRACT

The infection caused by porcine epidemic diarrhea virus (PEDV) is associated with high mortality in piglets worldwide. Host factors involved in the efficient replication of PEDV, however, remain largely unknown. Our recent proteomic study in the virus-host interaction network revealed a significant increase in the accumulation of CALML5 (EF-hand protein calmodulin-like 5) following PEDV infection. A further study unveiled a biphasic increase of CALML5 in 2 and 12 hours after viral infection. Similar trends were observed in the intestines of piglets in the early and late stages of the PEDV challenge. Moreover, CALML5 depletion reduced PEDV mRNA and protein levels, leading to a one-order-of-magnitude decrease in virus titer. At the early stage of PEDV infection, CALML5 affected the endosomal trafficking pathway by regulating the expression of endosomal sorting complex related cellular proteins. CALML5 depletion also suppressed IFN-ß and IL-6 production in the PEDV-infected cells, thereby indicating its involvement in negatively regulating the innate immune response. Our study reveals the biological function of CALML5 in the virology field and offers new insights into the PEDV-host cell interaction.

10.
Zool Res ; 45(3): 633-647, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38766746

ABSTRACT

Painful stimuli elicit first-line reflexive defensive reactions and, in many cases, also evoke second-line recuperative behaviors, the latter of which reflects the sensing of tissue damage and the alleviation of suffering. The lateral parabrachial nucleus (lPBN), composed of external- (elPBN), dorsal- (dlPBN), and central/superior-subnuclei (jointly referred to as slPBN), receives sensory inputs from spinal projection neurons and plays important roles in processing affective information from external threats and body integrity disruption. However, the organizational rules of lPBN neurons that provoke diverse behaviors in response to different painful stimuli from cutaneous and deep tissues remain unclear. In this study, we used region-specific neuronal depletion or silencing approaches combined with a battery of behavioral assays to show that slPBN neurons expressing substance P receptor ( NK1R) (lPBN NK1R) are crucial for driving pain-associated self-care behaviors evoked by sustained noxious thermal and mechanical stimuli applied to skin or bone/muscle, while elPBN neurons are dispensable for driving such reactions. Notably, lPBN NK1R neurons are specifically required for forming sustained somatic pain-induced negative teaching signals and aversive memory but are not necessary for fear-learning or escape behaviors elicited by external threats. Lastly, both lPBN NK1R and elPBN neurons contribute to chemical irritant-induced nocifensive reactions. Our results reveal the functional organization of parabrachial substrates that drive distinct behavioral outcomes in response to sustained pain versus external danger under physiological conditions.


Subject(s)
Nociception , Parabrachial Nucleus , Animals , Parabrachial Nucleus/physiology , Mice , Nociception/physiology , Neurons/physiology , Pain/physiopathology , Male , Behavior, Animal/physiology
11.
Hortic Res ; 11(5): uhae079, 2024 May.
Article in English | MEDLINE | ID: mdl-38766534

ABSTRACT

Musa ornata and Musa velutina are members of the Musaceae family and are indigenous to the South and Southeast Asia. They are very popular in the horticultural market, but the lack of genomic sequencing data and genetic studies has hampered efforts to improve their ornamental value. In this study, we generated the first chromosome-level genome assemblies for both species by utilizing Oxford Nanopore long reads and Hi-C reads. The genomes of M. ornata and M. velutina were assembled into 11 pseudochromosomes with genome sizes of 427.85 Mb and 478.10 Mb, respectively. Repetitive sequences comprised 46.70% and 50.91% of the total genomes for M. ornata and M. velutina, respectively. Differentially expressed gene (DEG) and Gene Ontology (GO) enrichment analyses indicated that upregulated genes in the mature pericarps of M. velutina were mainly associated with the saccharide metabolic processes, particularly at the cell wall and extracellular region. Furthermore, we identified polygalacturonase (PG) genes that exhibited higher expression level in mature pericarps of M. velutina compared to other tissues, potentially being accountable for pericarp dehiscence. This study also identified genes associated with anthocyanin biosynthesis pathway. Taken together, the chromosomal-level genome assemblies of M. ornata and M. velutina provide valuable insights into the mechanism of pericarp dehiscence and anthocyanin biosynthesis in banana, which will significantly contribute to future genetic and molecular breeding efforts.

12.
Front Microbiol ; 15: 1329683, 2024.
Article in English | MEDLINE | ID: mdl-38638893

ABSTRACT

Introduction: Hemorrhagic fever with renal syndrome (HFRS) is an acute infectious disease comprising five stages: fever, hypotension, oliguria, diuresis (polyuria), and convalescence. Increased vascular permeability, coagulopathy, and renal injury are typical clinical features of HFRS, which has a case fatality rate of 1-15%. Despite this, a comprehensive meta-analyses of the clinical characteristics of patients who died from HFRS is lacking. Methods: Eleven Chinese- and English-language research databases were searched, including the China National Knowledge Infrastructure Database, Wanfang Database, SinoMed, VIP Database, PubMed, Embase, Scopus, Cochrane Library, Web of Science, Proquest, and Ovid, up to October 5, 2023. The search focused on clinical features of patients who died from HFRS. The extracted data were analyzed using STATA 14.0. Results: A total of 37 articles on 140,295 patients with laboratory-confirmed HFRS were included. Categorizing patients into those who died and those who survived, it was found that patients who died were older and more likely to smoke, have hypertension, and have diabetes. Significant differences were also observed in the clinical manifestations of multiple organ dysfunction syndrome, shock, occurrence of overlapping disease courses, cerebral edema, cerebral hemorrhage, toxic encephalopathy, convulsions, arrhythmias, heart failure, dyspnea, acute respiratory distress syndrome, pulmonary infection, liver damage, gastrointestinal bleeding, acute kidney injury, and urine protein levels. Compared to patients who survived, those who died were more likely to demonstrate elevated leukocyte count; decreased platelet count; increased lactate dehydrogenase, alanine aminotransferase, and aspartate aminotransferase levels; prolonged activated partial thromboplastin time and prothrombin time; and low albumin and chloride levels and were more likely to use continuous renal therapy. Interestingly, patients who died received less dialysis and had shorter average length of hospital stay than those who survived. Conclusion: Older patients and those with histories of smoking, hypertension, diabetes, central nervous system damage, heart damage, liver damage, kidney damage, or multiorgan dysfunction were at a high risk of death. The results can be used to assess patients' clinical presentations and assist with prognostication.Systematic review registration:https://www.crd.york.ac.uk/prospero/, (CRD42023454553).

13.
Small Methods ; : e2400108, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38558249

ABSTRACT

In contrast to the thermodynamically unfavorable anodic oxygen evolution reaction, the electrocatalytic urea oxidation reaction (UOR) presents a more favorable thermodynamic potential. However, the practical application of UOR has been hindered by sluggish kinetics. In this study, hierarchical porous nanosheet arrays featuring abundant Ni-WO3 heterointerfaces on nickel foam (Ni-WO3/NF) is introduced as a monolith electrode, demonstrating exceptional activity and stability toward UOR. The Ni-WO3/NF catalyst exhibits unprecedentedly rapid UOR kinetics (200 mA cm-2 at 1.384 V vs. RHE) and a high turnover frequency (0.456 s-1), surpassing most previously reported Ni-based catalysts, with negligible activity decay observed during a durability test lasting 150 h. Ex situ X-ray photoelectron spectroscopy and density functional theory calculations elucidate that the WO3 interface significantly modulates the local charge distribution of Ni species, facilitating the generation of Ni3+ with optimal affinity for interacting with urea molecules and CO2 intermediates at heterointerfaces during UOR. This mechanism accelerates the interfacial electrocatalytic kinetics. Additionally, in situ Fourier transform infrared spectroscopy provides deep insights into the substantial contribution of interfacial Ni-WO3 sites to UOR electrocatalysis, unraveling the underlying molecular-level mechanisms. Finally, the study explores the application of a direct urea fuel cell to inspire future practical implementations.

14.
Article in English | MEDLINE | ID: mdl-38647881

ABSTRACT

Heart failure and myocardial infarction, global health concerns, stem from limited cardiac regeneration post-injury. Myocardial infarction, typically caused by coronary artery blockage, leads to cardiac muscle cell damage, progressing to heart failure. Addressing the adult heart's minimal self-repair capability is crucial, highlighting cardiac regeneration research's importance. Studies reveal a metabolic shift from anaerobic glycolysis to oxidative phosphorylation in neonates as a key factor in impaired cardiac regeneration, with mitochondria being central. The heart's high energy demands rely on a robust mitochondrial network, essential for cellular energy, cardiac health, and regenerative capacity. Mitochondria's influence extends to redox balance regulation, signaling molecule interactions, and apoptosis. Changes in mitochondrial morphology and quantity also impact cardiac cell regeneration. This article reviews mitochondria's multifaceted role in cardiac regeneration, particularly in myocardial infarction and heart failure models. Understanding mitochondrial function in cardiac regeneration aims to enhance myocardial infarction and heart failure treatment methods and insights.

15.
Zhongguo Zhong Yao Za Zhi ; 49(3): 596-606, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621863

ABSTRACT

This study aims to optimize the prediction model of personalized water pills that has been established by our research group. Dioscoreae Rhizoma, Leonuri Herba, Codonopsis Radix, Armeniacae Semen Amarum, and calcined Oyster were selected as model medicines of powdery, fibrous, sugary, oily, and brittle materials, respectively. The model prescriptions were obtained by uniform mixing design. With hydroxypropyl methylcellulose E5(HPMC-E5) aqueous solution as the adhesive, personalized water pills were prepared by extrusion and spheronizaition. The evaluation indexes in the pill preparation process and the multi-model statistical analysis were employed to optimize and evaluate the prediction model of personalized water pills. The prediction equation of the adhesive concentration was obtained as follows: Y_1=-4.172+3.63X_A+15.057X_B+1.838X_C-0.997X_D(adhesive concentration of 10% when Y_1<0, and 20% when Y_1>0). The overall accuracy of the prediction model for adhesive concentration was 96.0%. The prediction equation of adhesive dosage was Y_2=6.051+94.944X_A~(1.5)+161.977X_B+70.078X_C~2+12.016X_D~(0.3)+27.493X_E~(0.3)-2.168X_F~(-1)(R~2=0.954, P<0.001). Furthermore, the semantic prediction model for material classification of traditional Chinese medicines was used to classify the materials contained in the prescription, and thus the prediction model of personalized water pills was evaluated. The results showed that the prescriptions for model evaluation can be prepared with one-time molding, and the forming quality was better than that established by the research group earlier. This study has achieved the optimization of the prediction model of personalized water pills.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Water , Semantics , Prescriptions
16.
Zhongguo Zhong Yao Za Zhi ; 49(3): 607-617, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621864

ABSTRACT

This study aims to optimize the composite excipients suitable for the preparation of concentrated water pills of personalized traditional Chinese medicine prescriptions by the extruding-rounding method and investigate the roles of each excipient in the preparation process. The fiber materials and powder materials were taken as the standard materials suitable as excipients in the preparation of personalized concentrated water pills without excipient. Water absorption properties and torque rheology were used as indicators for selecting the materials of composite excipients. The ratio of composite excipients was optimized by D-optimal mixture design. Moreover, to demonstrate the universal applicability of the optimal composite excipients, this study selected three traditional Chinese medicine prescriptions with low, medium, and high extraction rates to verify the optimal ratio. Finally, the effects of each selected excipient on the molding of personalized concentrated water pills were investigated with the four parameters of the pill molding quality as indicators. The optimized composite excipients were dextrin∶microcrystalline cellulose(MCC)∶low-substituted hydroxypropyl cellulose(L-HPC) at a ratio of 1∶2∶4. The composite excipients were used for the preparation of personalized concentrated water pills with stable process, good quality, and a wide range of application. Dextrin acted as a diluent and accelerated the speed of extruding. MCC mainly served as an adhesive, increasing the cohesion and viscosity of the pills. L-HPC as a water absorbent and disintegrating agent can absorb and hold the water of the concentrate and has a strong disintegration effect.


Subject(s)
Drugs, Chinese Herbal , Excipients , Excipients/chemistry , Medicine, Chinese Traditional , Water/chemistry , Drugs, Chinese Herbal/chemistry
17.
Zhongguo Zhong Yao Za Zhi ; 49(3): 571-579, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621860

ABSTRACT

In recent years, as people's living standards continue to improve, and the pace of life accelerates dramatically, the demand and quality of traditional Chinese medicine(TCM) services from patients continue to rise. As an essential supplement to the existing forms of TCM application, such as Chinese patent medicine, decoction, and formulated granules, presonalized TCM preparations is facing an increasing market demand. Currently, manual and semi-mechanized production are the primary production ways in presonalized TCM preparations. However, the production process control level is low, and digitalization and informatization need to be improved, which restricts the automated and intelligent development of presonalized TCM preparations. Presonalized TCM preparations faces a significant opportunity and challenge in integrating with intelligent manufacturing through research and development of intelligent equipment and core technology. This paper overviews the connotation and characteristics of intelligent manufacturing and summarizes the application of intelligent manufacturing technologies such as "Internet of things" "big data", and "artificial intelligence" in the TCM industry. Based on the innovative research and development model of "intelligent classification of TCM materials, intelligent decision making of prescription and process, and online control and intelligent production" of presonalized TCM preparations, the research practice and achievements from our research group in the field of intelligent manufacturing of presonalized TCM preparations are introduced. Ultimately, the paper proposes the direction for developing intelligent manufacturing of presonalized TCM preparations, which will provide a reference for the research and application of automation and intelligence of presonalized TCM preparations.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Humans , Quality Control , Technology, Pharmaceutical , Intelligence
18.
Zhongguo Zhong Yao Za Zhi ; 49(3): 634-643, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621867

ABSTRACT

This paper aims to study the correlation between the physicochemical properties of raw materials and intermediates and the molding quality and law of traditional Chinese medicine(TCM) gel plaster by using TCM slices and powder as raw materials. 48 TCM compounds are selected as model prescriptions to prepare gel plasters. The rotational rheometer is used to determine the rheological parameters of the plaster, including storage modulus(G'), loss modulus(G″), yield stress(τ), and creep compliance [J(t)]. The molding quality of the prepared TCM gel plaster is evaluated by subjective and objective measures. Clustering and principal component analysis are conducted to evaluate the physical properties of the plaster. By measuring the rheological properties of the plaster, the molding quality of the TCM gel plaster can be predicted, with an accuracy of 83.72% after seven days of modeling and 88.37% after 30 days of modeling. When the parameters such as G' and G″ of the plaster are large, and the [J(t)] is small, the molding quality of the plaster is better. When the plaster coating point is no less than 3, it is difficult to be coated. In addition, when the proportion of metal ions in the prescription is higher, the 30-day forming quality of the plaster is mainly affected, and the viscosity of the plaster is poor. If the prescription contains many acidic chemical components, the 7-day forming quality of the plaster is mainly affected, with many residuals. The results suggest that the rheological properties of the plaster can be used to predict the molding quality of TCM slice and powder gel plaster. It can provide a reference for the development of TCM gel plaster prescriptions.


Subject(s)
Medicine, Chinese Traditional , Prescriptions , Powders , Viscosity , Rheology
19.
Zhongguo Zhong Yao Za Zhi ; 49(3): 587-595, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621862

ABSTRACT

A method for material classification of traditional Chinese medicines based on the physical properties of powder has been established by our research group. This method involves pre-treatment of traditional Chinese medicine decoction pieces, powder preparation, and determination of physical properties, being cumbersome. In this study, the word segmentation logic of semantic analysis was adopted to establish the thesaurus and local standardized semantic word segmentation database with the macroscopic and microscopic characteristics of 36 model traditional Chinese medicines as the basic data. The physical properties of these medicines have been determined and the classification of these medicines is clear in the cluster analysis. A total of 55 keywords for powdery, fibrous, sugary, oily, and brittle materials were screened by association rules and the set inclusion and exclusion criteria, and the weights of the keywords were calculated. Furthermore, the algorithms of the keyword matching scores and the computation rules of the single or multiple material classification were established for building the intelligent model of semantic analysis for the material classification. The semantic classification results of the other 35 TCMs except Pseudostellariae Radix(multi-material medicine) agreed with the clustering results based on the physical properties of the powder, with an agreement rate of 97.22%. In model validation, the prediction results of semantic classification of traditional Chinese medicines were consistent with the clustering results based on the physical properties of powder, with an agreement rate of 83.33%. The results showed that the method of material classification based on semantic analysis was feasible, which laid a foundation for the development of intelligent decision-making technology for personalized traditional Chinese medicine preparations.


Subject(s)
Drugs, Chinese Herbal , Medicine, Chinese Traditional , Powders , Semantics , Plant Roots
20.
Zhongguo Zhong Yao Za Zhi ; 49(3): 644-652, 2024 Feb.
Article in Chinese | MEDLINE | ID: mdl-38621868

ABSTRACT

This study aims to optimize the matrix formulation for the hot-melt pressure-sensitive adhesive plaster of personalized traditional Chinese medicine(TCM) preparations and verify the applicability of the formulation. The central composite design in JMP Pro 16.1.0 was employed to optimize the dosages of styrene-isoprene-styrene triblock copolymer(SIS), hydrogenated petroleum resin, and lightweight liquid paraffin, with the fine powder of Yipifang as the model drug(drug loading of 10%) and the sensory score and objective evaluation as the comprehensive evaluation indicators. The quality evaluation system of hot-melt pressure-sensitive adhesive plaster of personalized TCM preparations was established. The applicability of the optimized matrix formulation of hot-melt pressure-sensitive adhesive plaster was verified with 16 TCM preparations for external application. Furthermore, the applicability of the matrix formulation was investigated with different drug loadings. The general molding matrix formulation was SIS∶hydrogenated petroleum resin∶lightweight liquid paraffin 3∶3∶5. The optimized matrix formulation showed good molding properties and high quality scores for 16 TCM preparations and were suitable for the plastering of finely powdered decoction pieces with a loading capacity of 10% to 30%. The results suggest that the optimized matrix formulation has good applicability and is suitable for TCM preparations. The findings lay a foundation for the application and promotion of the hot-melt pressure-sensitive adhesive plasters of personalized TCM preparations.


Subject(s)
Drugs, Chinese Herbal , Petroleum , Medicine, Chinese Traditional , Mineral Oil , Polystyrenes
SELECTION OF CITATIONS
SEARCH DETAIL
...