Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
1.
Sci Adv ; 10(11): eadl6498, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38478599

ABSTRACT

Designing a functional, conductive metal-organic framework (cMOF) is highly desired. Substantial efforts have been dedicated to increasing the intralayer conjugation of the cMOFs, while less dedication has been made to tuning the interlayer charge transport of the metal-organic nanosheets for the controllable dielectric property. Here, we construct a series of conductive bimetallic organic frameworks of (ZnxCu3-x) (hexahydroxytriphenylene)2 (ZnCu-HHTP) to allow for fine-tuned interlayer spacing of two-dimensional frameworks, by adjusting the ratios of Zn and Cu metal ions. This approach for atomistic interlayer design allows for the finely control of the charge transport, band structure, and dielectric properties of the cMOF. As a result, Zn3Cu1-HHTP, with an optimal dielectric property, exhibits high-efficiency absorption in the gigahertz microwave range, achieving an ultra-strong reflection loss of -81.62 decibels. This study not only advances the understanding of the microstructure-function relationships in cMOFs but also offers a generic nanotechnology-based approach to achieving controllable interlayer spacing in MOFs for the targeted applications.

2.
RSC Adv ; 14(12): 8116-8123, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38464696

ABSTRACT

In order to investigate the structure of FeAl mesoscopic crystals segregating in liquid state alloys, we have determined their equilibrium structures (Wulff shape) based on the Wulff cluster model. For non-stoichiometric surface terminations, the chemical environment is taken into account through the chemical potential of the constituents. In this case, different cluster shapes change as a function of the chemical environment. In order to model the growth process in more detail, we propose a quasi-static growth model based on the sequential addition of (sub-)monolayers in the most favorable surface directions. Thus, a sequence of different Wulff shapes results in the growth process, as illustrated for the FeAl intermetallic compound. This model is proved preliminarily by calculating the concentration trend of Al/Fe atoms on both Al-terminated and Fe-terminated surfaces, and by simulating the most stable layer adsorbed on these two surfaces. This model might be helpful in analyzing the growth processes including nucleation barriers during nucleation processes theoretically.

3.
Int J Radiat Biol ; 100(4): 550-564, 2024.
Article in English | MEDLINE | ID: mdl-38252315

ABSTRACT

PURPOSE: In the event of a large-scale radiological accident, rapid and high-throughput biodosimetry is the most vital basis in medical resource allocation for the prompt treatment of victims. However, the current biodosimeter is yet to be rapid and high-throughput. Studies have shown that ionizing radiation modulates expressions of circular RNAs (circRNAs) in healthy human cell lines and tumor tissue. circRNA expressions can be quantified rapidly and high-throughput. However, whether circRNAs are suitable for early radiation dose classification remains unclear. METHODS: We employed transcriptome sequencing and bioinformatics analysis to screen for radiation-differentially expressed circRNAs in the human lymphoblastoid cell line AHH-1 at 4 h following exposure to 0, 2, and 5 Gy 60Co γ-rays. The dose-response relationships between differentially expressed circRNA expressions and absorbed doses were investigated using real-time polymerase chain reaction and linear regression analysis at 4 h, 24 h, and 48 h post-exposure to 0, 2, 4, 6, and 8 Gy. Six distinct dose classification models of circRNA panels were established and validated by receiver operating characteristic (ROC) curve analysis. RESULTS: A total of 11 radiation-differentially expressed circRNAs were identified and validated. Based on dose-response effects, those circRNAs changed in a dose-responsive or dose-dependent manner were combined into panels A through F at 4 h, 24 h, and 48 h post-irradiation. ROC curve analysis showed that panels A through C had the potential to effectively classify exposed and non-exposed conditions, which area under the curve (AUC) of these three panels were all 1.000, and the associate p values were .009. Panels D through F excellently distinguished between different dose groups (AUC = 0.963-1.000, p < .05). The validation assay showed that panels A through F demonstrated consistent excellence in sensitivity and specificity in dose classification. CONCLUSIONS: Ionizing radiation can indeed modulate the circRNA expression profile in the human lymphoblastoid cell line AHH-1. The differentially expressed circRNAs exhibit the potential for rapid and high-throughput dose classification.


Subject(s)
RNA, Circular , RNA , Humans , RNA, Circular/genetics , RNA/genetics , RNA/metabolism , ROC Curve , Sensitivity and Specificity , Cell Line
4.
ACS Nano ; 17(13): 12510-12518, 2023 Jul 11.
Article in English | MEDLINE | ID: mdl-37350557

ABSTRACT

Metal-organic frameworks (MOFs) manifest enormous potential in promoting electromagnetic wave (EMW) absorption thanks to the tailored components, topological structure, and high porosity. Herein, rodlike conductive MOFs (cMOFs) composed of adjustable metal ions of Zn, Cu, Co, or Ni and ligands of hexahydroxytriphenylene (HHTP) are prepared to attain tunable dielectric properties for a tailored EMW absorption. Specifically, the influences of the cMOFs' composition, charge transport characteristic, topological crystalline structure, and anisotropy microstructure on dielectric and EMW absorption performance are ascertained, advancing the understanding of EMW attenuation mechanisms of MOFs. The boosted conductive and polarization losses derived from the conjugation effects and terminal groups, as well as shape anisotropy, lead to a prominent EMW absorption of the cMOFs. The Cu-HHTP confers a minimum reflection loss (RLmin) of -63.55 dB at the thickness of 2.9 mm and a maximum effective absorption bandwidth of 5.2 GHz. Moreover, Zn-HHTP showcases the absorption superiority in the S-band (2-4 GHz) with an RLmin of -62.8 dB at a thickness of 1.9 mm. This work not only hoists the mechanistic understanding of the structure-function relationships for the cMOFs but also offers guidelines for preparing functional MOF materials.

5.
Article in English | MEDLINE | ID: mdl-37188435

ABSTRACT

Eye lens opacification (cataract) induced by ionizing radiation is an important concern for radiation protection. Human lens epithelial cells (HLE-B3) were irradiated with γ-rays and radiation effects, including cell proliferation, cell migration, cell cycle distribution, and other changes related to the ß-catenin pathway, were determined after 8-72 h and 7 d. In an in vivo model, mice were irradiated; DNA damage (γH2AX foci) in the cell nucleus of the anterior capsule of the lens was detected within 1 h, and radiation effects on the anterior and posterior lens capsules were observed after 3 months. Low-dose ionizing radiation promoted cell proliferation and migration. The expression levels of ß-catenin, cyclin D1, and c-Myc were significantly increased in HLE-B3 cells after irradiation and ß-catenin was translocated into the cell nucleus (activation of the Wnt/ß-catenin pathway). In C57BL/6 J mouse lens, even a very low irradiation dose (0.05 Gy) induced the formation of γH2AX foci, 1 h after irradiation. At 3 months, migratory cells were found in the posterior capsule; expression of ß-catenin was increased and it was clustered at the nucleus in the epithelial cells of the lens anterior capsule. The Wnt/ß-catenin signaling pathway may an important role in promoting abnormal proliferation and migration of lens epithelial cells after low-dose irradiation.


Subject(s)
Wnt Signaling Pathway , beta Catenin , Humans , Mice , Animals , Wnt Signaling Pathway/genetics , beta Catenin/genetics , Mice, Inbred C57BL , Cell Proliferation , Radiation, Ionizing , Epithelial Cells/metabolism
6.
Small ; 19(40): e2302686, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37208798

ABSTRACT

Developing carbon encapsulated magnetic composites with rational design of microstructure for achieving high-performance electromagnetic wave (EMW) absorption in a facile, sustainable, and energy-efficiency approach is highly demanded yet remains challenging. Here, a type of N-doped carbon nanotube (CNT) encapsulated CoNi alloy nanocomposites with diverse heterostructures are synthesized via the facile, sustainable autocatalytic pyrolysis of porous CoNi-layered double hydroxide/melamine. Specifically, the formation mechanism of the encapsulated structure and the effects of heterogenous microstructure and composition on the EMW absorption performance are ascertained. With the presence of melamine, CoNi alloy emerges its autocatalysis effect to generate N-doped CNTs, leading to unique heterostructure and high oxidation stability. The abundant heterogeneous interfaces induce strong interfacial polarization to EMWs and optimize impedance matching characteristic. Combined with the inherent high conductive and magnetic loss capabilities, the nanocomposites accomplish a high-efficiency EMW absorption performance even at a low filling ratio. The minimum reflection loss of -84.0 dB at the thickness of 3.2 mm and a maximum effective bandwidth of 4.3 GHz are obtained, comparable to the best EMW absorbers. Integrated with the facile, controllable, and sustainable preparation approach of the heterogenous nanocomposites, the work shows a great promise of the nanocarbon encapsulation protocol for achieving lightweight, high-performance EMW absorption materials.

7.
Materials (Basel) ; 16(6)2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36984037

ABSTRACT

To provide the basis for thermal conductivity regulation of vermicular graphite cast iron (VGI), a new theoretical method consisting of shape interpolation, unit cell model and numerical calculation was proposed. Considering the influence of the graphite anisotropy and interfacial contact thermal conductivity (ICTC), the effective thermal conductivity of a series of unit cell models was calculated by numerical calculation based on finite difference. The effects of microstructure on effective thermal conductivity of VGI were studied by shape interpolation. The experimental results were in good agreement with the calculated ones. The effective thermal conductivity of VGI increases in power function with the decrease in graphite shape parameter, and increases linearly with the increase in graphite volume fraction and thermal conductivity of matrix. When the graphite volume fraction increases by 1%, the thermal conductivity of nodular cast iron increases by about 0.18 W/(m·K), while that of gray cast iron increases by about 3 W/(m·K). The thermal conductivity of cast iron has the same sensitivity to the thermal conductivity of matrix regardless of the graphite shape parameter. The thermal conductivity of matrix increased by 15 W/(m·K) and the thermal conductivity of cast iron increased by about 12 W/(m·K). Moreover, the more the graphite shape deviates from the sphere, the greater the enhancement effect of graphite anisotropy on thermal conductivity than the hindrance effect of interface between graphite and matrix. This work can provide guidance for the development of high thermal conductivity VGI and the study of thermal conductivity of composites containing anisotropic dispersed phase particles with complex shapes.

8.
Front Microbiol ; 14: 1098818, 2023.
Article in English | MEDLINE | ID: mdl-36778862

ABSTRACT

Enterotoxigenic Escherichia coli (ETEC) is a common pathogen of swine colibacillosis, which can causing a variety of diseases initiate serious economic losses to the animal husbandry industry. The traditional Chinese medicine Changyanning (CYN) often used for diarrhea caused by the accumulation of damp heat in the gastrointestinal tract, has anti-bacterial, anti-inflammatory and anti-oxidation effects. This study investigated the effect of CYN on gut microbiota and metabolism in mice infected with ETEC K88. A total of 60 Kunming mices were divided into Control group, ETEC K88 group, CYN.L group (2.5 g/kg), CYN.M group (5 g/kg), CYN.H group (10 g/kg) and BTW group (10 g/kg), determined clinical symptoms, intestinal morphology, inflammatory responses, gut microbiota as well as serum metabolites. CYN administration elevated ETEC K88-induced body weight loss, ameliorated duodenum, ilem, colon pathological injury, and reduced the increase of spleen index caused by ETEC. CYN also reduced the levels of pro-inflammatory cytokines (IL-6, TNE-α) in the serum. 16s rRNA gene sequencing results showed that CYN increased the abundance of beneficial bacteria Lactobacillus but decreased the abundance of pathogenic bacteria Escherichia in the feces of mice. Moreover, CYN participates in amino acid biosynthesis and metabolism in the process of serum metabolism to regulates ameliorate intestinal injury induced by ETEC K88. In conclusion, CYN regulates gut microbiota and metabolism to ameliorate intestinal injury induced by ETEC K88.

9.
Radiat Res ; 198(5): 488-507, 2022 11 01.
Article in English | MEDLINE | ID: mdl-36351324

ABSTRACT

The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid ß-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/ß-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.


Subject(s)
Carnitine O-Palmitoyltransferase , MAP Kinase Signaling System , Animals , Humans , Mice , Rats , Carnitine O-Palmitoyltransferase/genetics , Carnitine O-Palmitoyltransferase/metabolism , Cell Proliferation , Gamma Rays , Rats, Sprague-Dawley , Oxidation-Reduction
10.
Phys Chem Chem Phys ; 24(32): 19488-19501, 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35929486

ABSTRACT

In this work, by combining density functional theory calculations and Monte Carlo simulations with cluster expansion Hamiltonian methods, we investigate the surface aggregation of Pt atoms on the Pt/Ag(111) surface under vacuum conditions and in the presence of CO. The results show the decisive influence of CO-CO interactions and reveal the competition between CO-metal interactions and CO-CO repulsion. Thus, in addition to evidence of reverse Pt segregation caused by CO adsorption, two methods for tuning the surface Pt atomic system synthesis are found, where the surface can be adjusted by tuning the CO coverage to obtain a larger number of monomers (0.25 ML CO coverage) or a pure Pt layer (1 ML coverage) at Pt bulk concentrations above 10%. For highly dilute alloys, the Pt distribution can be controlled by adjusting the concentration. Indeed, for a Pt bulk concentration close to 8% and a CO coverage of about less than 1 ML, between 400 and 600 K, an ordered structure has been observed which maximized the number of Pt monomers and homogeneous distribution on the surface. The overpotential (η) of the ordered Pt3Ag(111) surface is 0.41 V, slightly lower than that of pure Pt(111) (η = 0.43 V), indicating a potential candidate for ORR catalysts with rich active sites and a low overpotential.

11.
Radiat Res ; 2022 Aug 17.
Article in English | MEDLINE | ID: mdl-35976730

ABSTRACT

The intestinal compensatory proliferative potential is a key influencing factor for susceptibility to radiation-induced intestinal injury. Studies indicated that the carnitine palmitoyltransferase 1 (CPT1) mediated fatty acid ß-oxidation (FAO) plays a crucial role in promoting the survival and proliferation of tumor cells. Here, we aimed to explore the effect of 60Co gamma rays on CPT1 mediated FAO in the radiation-induced intestinal injury models, and investigate the role of CPT1 mediated FAO in the survival and proliferation of intestinal cells after irradiation. We detected the changed of FAO in the plasma and small intestine of Sprague Dawley (SD) rats at 24 h after 60Co gamma irradiation (0, 5 and 10 Gy), using target metabolomics, qRT-PCR, immunohistochemistry (IHC), western blot (WB) and related enzymatic activity kits. We then analyzed the FAO changes in radiation-induced intestinal injury models regardless of ex vivo (mice enteroids), or in vitro (normal human intestinal epithelial cell lines, HIEC-6). HIEC-6 cells were transduced with lentivirus vector GV392 and treated with puromycin for obtaining CPT1 stable knockout cell lines, named CPT1 KO. CPT1 enzymatic activities of HIEC-6 cells and mice enteroids were also inhibited by pharmaceutical inhibitor ST1326 and Etomoxir (ETO), to study the function of CPT1 in the survival and proliferation of HIEC-6 cells after 60Co gamma irradiation. We found that CPT1 mediated FAO was altered in the small intestine of the SD rats after irradiation, especially, the expression level and enzymatic activity of CPT1 were significantly increased. Similarly, the expression levels of CPT1 were also remarkably enhanced in mice enteroids and HIEC-6 cells after irradiation. CPT1 inhibition decreased the proliferation of the HIEC-6 cells and mice enteroids after irradiation partially by reducing the extracellular signal-regulated kinase (ERK1/2) and c-Jun N-terminal kinase (JNK) pathways activation, CPT1 inhibition also reduced the proliferation of mice enteroids after irradiation partially by down-regulating the Wnt/ß-catenin signaling activity. In conclusion, our study indicated that CPT1 plays a crucial role in promoting intestinal epithelial cell proliferation after irradiation.

12.
Nanomaterials (Basel) ; 12(11)2022 May 25.
Article in English | MEDLINE | ID: mdl-35683658

ABSTRACT

In this article, the behavior of various Pd ensembles on the PdAg(111) surfaces was systematically investigated for oxygen reduction reaction (ORR) intermediates using density functional theory (DFT) simulation. The Pd monomer on the PdAg(111) surface (with a Pd subsurface layer) has the best predicted performance, with a higher limiting potential (0.82 V) than Pt(111) (0.80 V). It could be explained by the subsurface coordination, which was also proven by the analysis of electronic properties. In this case, it is necessary to consider the influence of the near-surface layers when modeling the single-atom alloy (SAA) catalyst processes. Another important advantage of PdAg SAA is that atomic-dispersed Pd as adsorption sites can significantly improve the resistance to CO poisoning. Furthermore, by adjusting the Pd ensembles on the catalyst surface, an exciting ORR catalyst combination with predicted activity and high tolerance to CO poisoning can be designed.

13.
Phys Chem Chem Phys ; 24(18): 10798-10806, 2022 May 11.
Article in English | MEDLINE | ID: mdl-35475428

ABSTRACT

In this paper, the Wulff cluster model which has been proved to successfully describe the melt structure of pure metals, homogenous alloys and eutectic alloys has been extended to an alloy with intermetallic compounds (In50Bi50). According to the cohesive energy and the solid-state XRD patterns, the most possible types of clusters in the melt are Bi and InBi. At relatively high temperatures, the superimposed XRD (simulated) patterns of Bi and InBi clusters are in good agreement with the experimental HTXRD patterns in terms of the position and intensity of the peaks. With the decrease of temperature, there is an obvious deviation in the simulated XRD value at the second peak caused by the nucleation process of Bi clusters, which would be modified by adding simulated XRD patterns of the Bi bulk. The proportion of the superimposed Bi bulk XRD pattern increases with the decrease of temperature suggesting that the nucleation process of the Bi cluster begins at 160 °C.

14.
Dose Response ; 20(1): 15593258221081373, 2022.
Article in English | MEDLINE | ID: mdl-35237116

ABSTRACT

Plenty of reports focus on the effects of low-dose radiation (LDR) on peripheral blood lymphocytes in radiation workers. However, studies on red blood cells (RBCs) in radiation workers are rarely reported. Many studies focused on investigate the hemogram of radiation staffs without detecting other components of RBCs. To explore the potential effect of LDR on RBCs, we detected the level of RBC count, hemoglobin, 2,3-disphosphoglycerate (2,3-DPG), and glutathione (GSH), and then analyzed the factors on these indices in 106 medical radiation workers. As a result, RBC count was affected by sex, age, type of work, length of service (only for females), and annual effective dose (only for males). Hemoglobin status was affected by sex, type of work, and annual effective dose (only for males). Sex, age, and type of work had no effects on the concentration of 2,3-DPG and GSH. Length of service affected 2,3-DPG concentration, and annual effective dose affected GSH level. In conclusion, chronic occupational LDR exposure may have an effect on RBC count, hemoglobin status, and the concentration of 2,3-DPG and GSH in radiation workers to some extent. However, it is still unknown how this kind of influence affects the health of radiation workers.

15.
Phys Chem Chem Phys ; 24(11): 6803-6810, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35244639

ABSTRACT

The structural, electronic and vibrational properties of a water layer on Ag(100) and Ag(511) have been studied by first-principles calculations and ab initio molecular dynamics simulations. The most stable water structure on the Ag(100) and Ag(511) surfaces have been obtained. The AIMD results showed rather high stability of the water layer on the stepped surface at 140 K, indicating a crystal-like structure with long-range ordering. The calculated vibrational spectra at 140 K showed good agreement with the experimental results. On the Ag(100) surface, a red-shift was observed when the temperature increased from 140 K to 300 K caused by the change in the number of H-bonded (HB) hydrogen. On Ag(511), a three-fold splitting of the O-H stretch mode was observed. This can be explained by the special water structure at the stepped Ag surface: the relatively strong water-metal interaction at the step edge and weak water-terrace interaction/strong water-water interaction at the terrace, which can also explain the high stability of the water layer on the Ag(511) surface.

16.
Small ; 18(17): e2107637, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35315554

ABSTRACT

The advantages of sodium metal, such as abundant resources, low cost, high capacity, and high working potential, make it a promising metal anode. Unfortunately, the hazardous dendrite growth of sodium metal is one of the major hindrances for the practical application of sodium metal batteries (SMBs). By applying multifunctional Mg(II)@Ti3 C2 MXene as the protective layer for commercial Cu foil, the wettability of the electrolyte on the current collector is dramatically improved with the suppression of sodium dendrites. Moreover, the first-principles calculations prove that the surface of Mg(0001) is able to establish a connection with Na(111) growth, with Mg acting as the nucleation seed for sodium. The experimental results indicate that even when a high areal capacity of sodium (2 mAh cm-2 ) is deposited, no sodium dendrite is observed. Electrochemical tests, including symmetric cells, Na||Cu asymmetric cells, and full cells, prove the sodiophilic character of Mg2+ -decorated Ti3 C2 MXene. The results may also create a new pathway for developing other dendrite-free metal anodes, such as Li/K/Zn/Ca/Mg.

17.
Biomarkers ; 27(5): 448-460, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35315697

ABSTRACT

INTRODUCTION: In the event of radiological accidents and cancer radiotherapies in the clinic, the gastrointestinal (GI) system is vulnerable to ionizing radiation and shows GI injury. Accessible biomarkers may provide means to predict, evaluate, and treat GI tissue damage. The current study investigated radiation GI injury biomarkers in rat plasma. MATERIAL AND METHODS: High-coverage targeted lipidomics was employed to profile lipidome perturbations at 72 h after 0, 1, 2, 3, 5, and 8 Gy (60Co γ-rays at 1 Gy/min) total-body irradiation in male rat jejunum. The results were correlated with previous plasma screening outcomes. RESULTS: In total, 93 differential metabolites and 28 linear dose-responsive metabolites were screened in the jejunum. Moreover, 52 lipid species with significant differences both in jejunum and plasma were obtained. Three lipid species with linear dose-response relationship both in jejunum and plasma were put forth, which exhibited good to excellent sensitivity and specificity in triaging different exposure levels. DISCUSSION: The linear dose-effect relationship of lipid metabolites in the jejunum and the triage performance of radiation GI injury biomarkers in plasma were studied for the first time. CONCLUSION: The present study can provide insights into expanded biomarkers of IR-mediated GI injury and minimally invasive assays for evaluation.


Subject(s)
Lipidomics , Whole-Body Irradiation , Animals , Biomarkers/metabolism , Gamma Rays , Lipids , Male , Rats
18.
Phys Chem Chem Phys ; 24(4): 2251-2264, 2022 Jan 26.
Article in English | MEDLINE | ID: mdl-35014663

ABSTRACT

In this work, the surface structure of a PdAg alloy is investigated by cluster expansion (CE) combined Monte Carlo (MC) simulations. All systems with different component proportions show an obvious component segregation corresponding to the depth from the surface. A significant amount of Ag is observed on the first layer, and Pd is concentrated significantly on the second layer. The Pd distribution on the PdAg surfaces is closely related to the temperature and composition ascribed to the concentration and configurational entropy effects, which are explicitly treated in MC simulations. The vacancies mainly distribute separately. The simulation results show good agreement with the experimental evidence. Moreover, we demonstrated a general and highly effective casting combined quenching strategy for controlling the ensemble size and chemical composition of alloy surfaces which could successfully be applied to the large-scale production of SAA.

19.
Small ; 18(4): e2104264, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35083857

ABSTRACT

With the advantages of high theoretical-specific capacity and lowest working potential, lithium metal anode is considered as the most promising anode for next-generation batteries. Here, a scalable dealloying method is developed to prepare nano-sized bismuth (Bi). It is found that the Bi-modification can not only enhance the wettability of the commercial polyethylene separator but also suppresses the lithium dendrite growth. With the nano-sized Bi modified separator, 5V-class lithium metal batteries with commercial carbonate-based electrolyte show a 91% capacity retention ratio after 800 cycles. First-principle calculations prove that lithium atoms tend to deposit smoothly on the Bi surface. Moreover, for potassium ion batteries, nano-sized Bi shows a stable cycling performance and high capacity. The results may be useful for the development of high-energy and high-safety batteries.

20.
Nanomaterials (Basel) ; 11(12)2021 Nov 24.
Article in English | MEDLINE | ID: mdl-34947530

ABSTRACT

In the present work, density functional theory (DFT) calculations were applied to confirm that the gold carbide previously experimentally synthesized was AuC film. A crucial finding is that these kinds of AuC films are self-folded on the graphite substrate, leading to the formation of a semi-nanotube structure, which significantly diminishes the error between the experimental and simulated lattice constant. The unique characteristic, the spontaneous archlike reconstruction, makes AuC a possible candidate for self-assembled nanotubes. The band structure indicated, in the designed AuC nanotube, a narrow gap semiconductor with a bandgap of 0.14 eV. Both AIMD (at 300 and 450 K) results and phonon spectra showed a rather high stability for the AuC nanotube because a strong chemical bond formed between the Au-5d and C-2p states. The AuC nanotube could become a novel functional material.

SELECTION OF CITATIONS
SEARCH DETAIL
...