Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
PLoS One ; 19(6): e0305216, 2024.
Article in English | MEDLINE | ID: mdl-38941339

ABSTRACT

The measurement of chemical oxygen demand (COD) is very important in the process of sewage treatment. The value of COD reflects the effectiveness and trend of sewage treatment to a certain extent, but obtaining accurate data requires high cost and labor intensity. To1 solve this problem, this paper proposes an online soft measurement method for COD based on Convolutional Neural Network-Bidirectional Long Short-Term Memory Network-Attention Mechanism (CNN-BiLSTM-Attention) algorithm. Firstly, by analyzing the mechanism of the aerobic tank stage in the Anaerobic-Anoxic-Oxic (A2O) wastewater treatment process, the selection range of input variables was preliminarily determined, and the collected sample dataset was subjected to correlation analysis. Finally, pH, dissolved oxygen (DO), electrical conductivity (EC), and water temperature (T) were determined as input variables for soft measurement prediction of COD.Then, based on the feature extraction ability of CNN and the advantage that BiLSTM is able to capture the backward and forward dependencies in time series data, combined with the attention mechanism that can assign higher weights to the key data, a CNN-BiLSTM-Attention algorithm model was established to soft measure COD in the effluent from the aerobic zone of the A2O wastewater treatment process. At the same time, root mean square error (RMSE), mean absolute error (MAE), mean absolute percentage error (MAPE) and coefficient of determination (R2) were utilized Three indicators were used to evaluate the model, and the results showed that the model can accurately predict the value of COD and has a high accuracy. At the same time, compared with models such as CNN-LSTM-Attention, CNN-BiLSTM, CNN-LSTM, LSTM, RNN, BP, SVM, XGBoost, and RF etc., the results showed that the CNN-BiLSTM Attention model performed the best, proving the superiority of the algorithm model.The Wilcoxon signed-rank test indicates significant differences between the CNN-BiLSTM-Attention model and other models.


Subject(s)
Algorithms , Biological Oxygen Demand Analysis , Neural Networks, Computer , Biological Oxygen Demand Analysis/methods , Oxygen/analysis , Oxygen/metabolism , Wastewater/analysis , Wastewater/chemistry , Waste Disposal, Fluid/methods , Sewage/analysis
2.
Sensors (Basel) ; 23(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37960402

ABSTRACT

The method of acoustic radiation signal detection not only enables contactless measurement but also provides comprehensive state information during equipment operation. This paper proposes an enhanced feature extraction network (EFEN) for fault diagnosis of rolling bearings based on acoustic signal feature learning. The EFEN network comprises four main components: the data preprocessing module, the information feature selection module (IFSM), the channel attention mechanism module (CAMM), and the convolutional neural network module (CNNM). Firstly, the one-dimensional acoustic signal is transformed into a two-dimensional grayscale image. Then, IFSM utilizes three different-sized convolution filters to process input image data and fuse and assign weights to feature information that can attenuate noise while highlighting effective fault information. Next, a channel attention mechanism module is introduced to assign weights to each channel. Finally, the convolutional neural network (CNN) fault diagnosis module is employed for accurate classification of rolling bearing faults. Experimental results demonstrate that the EFEN network achieves high accuracy in fault diagnosis and effectively detects rolling bearing faults based on acoustic signals. The proposed method achieves an accuracy of 98.52%, surpassing other methods in terms of performance. In comparative analysis of antinoise experiments, the average accuracy remains remarkably high at 96.62%, accompanied by a significantly reduced average iteration time of only 0.25 s. Furthermore, comparative analysis confirms that the proposed algorithm exhibits excellent accuracy and resistance against noise.

SELECTION OF CITATIONS
SEARCH DETAIL
...