Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38943676

ABSTRACT

The cell wall shapes plant cell morphogenesis and affects the plasticity of organ growth. However, the way in which cell wall establishment is regulated by ethylene remains largely elusive. Here, by analyzing cell wall patterns, cell wall composition and gene expression in rice (Oryza sativa, L.) roots, we found that ethylene induces cell wall thickening and the expression of cell wall synthesis-related genes, including CELLULOSE SYNTHASE-LIKE C1, 2, 7, 9, 10 (OsCSLC1, 2, 7, 9, 10) and CELLULOSE SYNTHASE A3, 4, 7, 9 (OsCESA3, 4, 7, 9). Overexpression and mutant analyses revealed that OsCSLC2 and its homologs function in ethylene-mediated induction of xyloglucan biosynthesis mainly in the cell wall of root epidermal cells. Moreover, OsCESA-catalyzed cellulose deposition in the cell wall was enhanced by ethylene. OsCSLC-mediated xyloglucan biosynthesis likely plays an important role in restricting cell wall extension and cell elongation during the ethylene response in rice roots. Genetically, OsCSLC2 acts downstream of ETHYLENE-INSENSITIVE3-LIKE1 (OsEIL1)-mediated ethylene signaling, and OsCSLC1, 2, 7, 9 are directly activated by OsEIL1. Furthermore, the auxin signaling pathway is synergistically involved in these regulatory processes. These findings link plant hormone signaling with cell wall establishment, broadening our understanding of root growth plasticity in rice and other crops.

2.
Plant Cell Rep ; 37(12): 1653-1666, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30167804

ABSTRACT

KEY MESSAGE: TuMTP1 maintains Zn2+ and Co2+ homeostasis by sequestering excess Zn2+ and Co2+ into vacuoles. The mutations NSEDD/VTVTT in the His-rich loop and I119F in TMD3 of TuMTP1 restrict metal selectivity. Mineral nutrients, such as zinc (Zn) and cobalt (Co), are essential or beneficial for plants but can be toxic at elevated levels. Metal tolerance proteins (MTPs) are plant members of the cation diffusion facilitator (CDF) transporter family involved in cellular metal homeostasis. However, the determinants of substrate selectivity have not been clarified due to the diversity of MTP1 substrates in various plants. In this study, Triticum urartu MTP1 was characterized. When expressed in yeast, TuMTP1 conferred tolerance to Zn2+ and Co2+ but not Fe2+, Cu2+, Ni2+ or Cd2+ in solid and liquid culture and localized on the vacuolar membrane. Furthermore, TuMTP1-expressing yeast accumulated more Zn2+ and Co2+ when treated. TuMTP1 expression in T. urartu roots was significantly increased under Zn2+ and Co2+ stresses. Determinants of substrate selectivity were then examined through site-directed mutagenesis. The exchange of NSEDD with VTVTT in the His-rich loop of TuMTP1 restricted its metal selectivity to Zn2+, whereas the I119F mutation confined specificity to Co2+. The mutations H74, D78, H268 and D272 (in the Zn2+-binding site) and Leu322 (in the C-terminal Leu-zipper) partially or completely abolished the transport function of TuMTP1. These results show that TuMTP1 might sequester excess cytosolic Zn2+ and Co2+ into yeast vacuoles to maintain Zn2+ and Co2+ homeostasis. The NSEDD/VTVTT and I119F mutations are crucially important for restricting the substrate specificity of TuMTP1, and the Zn2+-binding site and Leu322 are essential for its ion selectivity and transport function. These results can be employed to change metal selectivity for biofortification or phytoremediation applications.


Subject(s)
Cobalt/metabolism , Homeostasis , Plant Proteins/metabolism , Triticum/metabolism , Zinc/metabolism , Amino Acid Sequence , Cobalt/pharmacology , Gene Expression Regulation, Plant/drug effects , Genetic Complementation Test , Homeostasis/drug effects , Phylogeny , Plant Proteins/chemistry , Plant Proteins/genetics , Saccharomyces cerevisiae/metabolism , Sequence Analysis, Protein , Triticum/drug effects , Triticum/genetics , Vacuoles/drug effects , Vacuoles/metabolism , Zinc/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...