Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; : e2309058, 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007178

ABSTRACT

Rock-climbing robots have significant potential in fieldwork and planetary exploration. However, they currently face limitations such as a lack of stability and adaptability on extreme terrains, slow locomotion, and single functionality. This study introduces a novel multimodal and adaptive rock-climbing robot (MARCBot), which addresses these limitations through spiny grippers that draw inspiration from morpho-functionalities observed in beetles, arboreal birds, and hoofed animals. This hybrid bioinspired design enables high attachment strength, passive adaptability to different terrains, and quick attachment on rock surfaces. The multimodal functionality of the gripper allows for attachment during climbing and support during walking. A novel control strategy using dynamics and quadratic programming (QP) optimizes attachment wrench distribution, reducing cost-of-transport by 20.03% and 6.05% compared to closed-loop inverse kinematic (CLIK) and virtual model control (VMC) methods, respectively. MARCBot achieved climbing speeds of 0.15 m min-1 on a vertical discrete rock surface under gravity and trotting speeds of up to 0.21 m s-1 on various complex terrains. It is the first robot capable of climbing on rock surfaces and trotting in complex terrains without the need for switching end-effectors. This study highlights significant advancements in climbing and multimodal locomotion for robots in extreme environments.

2.
IEEE Trans Vis Comput Graph ; 24(10): 2799-2812, 2018 10.
Article in English | MEDLINE | ID: mdl-29989969

ABSTRACT

Minimizing support structures is crucial in reducing 3D printing material and time. Partition-based methods are efficient means in realizing this objective. Although some algorithms exist for support-free fabrication of solid models, no algorithm ever considers the problem of support-free fabrication for shell models (i.e., hollowed meshes). In this paper, we present a skeleton-based algorithm for partitioning a 3D surface model into the least number of parts for 3D printing without using any support structure. To achieve support-free fabrication while minimizing the effect of the seams and cracks that are inevitably induced by the partition, which affect the aesthetics and strength of the final assembled surface, we put forward an optimization system with the minimization of the number of partitions and the total length of the cuts, under the constraints of support-free printing angle. Our approach is particularly tailored for shell models, and it can be applicable to solid models as well. We first rigorously show that the optimization problem is NP-hard and then propose a stochastic method to find an optimal solution to the objectives. We propose a polynomial-time algorithm for a special case when the skeleton graph satisfies the requirement that the number of partitioned parts and the degree of each node are bounded by a small constant. We evaluate our partition method on a number of 3D models and validate our method by 3D printing experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...