Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Proc Natl Acad Sci U S A ; 121(15): e2316447121, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38557174

ABSTRACT

Natural killer (NK) cell immunotherapy has gained attention as a promising strategy for treatment of various malignancies. In this study, we used a genome-wide CRISPR screen to identify genes that provide protection or susceptibility to NK cell cytotoxicity. The screen confirmed the role of several genes in NK cell regulation, such as genes involved in interferon-γ signaling and antigen presentation, as well as genes encoding the NK cell receptor ligands B7-H6 and CD58. Notably, the gene TMEM30A, encoding CDC50A-beta-subunit of the flippase shuttling phospholipids in the plasma membrane, emerged as crucial for NK cell killing. Accordingly, a broad range of TMEM30A knock-out (KO) leukemia and lymphoma cells displayed increased surface levels of phosphatidylserine (PtdSer). TMEM30A KO cells triggered less NK cell degranulation, cytokine production and displayed lower susceptibility to NK cell cytotoxicity. Blockade of PtdSer or the inhibitory receptor TIM-3, restored the NK cell ability to eliminate TMEM30A-mutated cells. The key role of the TIM-3 - PtdSer interaction for NK cell regulation was further substantiated by disruption of the receptor gene in primary NK cells, which significantly reduced the impact of elevated PtdSer in TMEM30A KO leukemic cells. Our study underscores the potential significance of agents targeting the interaction between PtdSer and TIM-3 in the realm of cancer immunotherapy.


Subject(s)
Hepatitis A Virus Cellular Receptor 2 , Killer Cells, Natural , Leukemia , Lymphoma , Cell Membrane/metabolism , Hepatitis A Virus Cellular Receptor 2/metabolism , Interferon-gamma/metabolism , Receptors, Natural Killer Cell , Humans , Leukemia/metabolism , Lymphoma/metabolism , Membrane Proteins/metabolism
2.
Res Sq ; 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38352479

ABSTRACT

Epstein-Barr virus (EBV) is the causative agent for multiple neoplastic diseases of epithelial and lymphocytic origin1-3. The heterogeneity of the viral elements expressed and the mechanisms by which these coding and non-coding genes maintain cancer cell properties in vivo remain elusive4,5. Here we conducted a multi-modal transcriptomic analysis of EBV-associated neoplasms and identified that the ubiquitously expressed RPMS1 non-coding RNAs support cancer cell properties by disruption of the interferon response. Our map of EBV expression shows a variable, but pervasive expression of BNLF2 discerned from the overlapping LMP1 RNA in bulk sequencing data. Using long-read single-molecule sequencing, we identified three new viral elements within the RPMS1 gene. Furthermore, single-cell sequencing datasets allowed for the separation of cancer cells and healthy cells from the same tissue biopsy and the characterization of a microenvironment containing interferon gamma excreted by EBV-stimulated T-lymphocytes. In comparison with healthy epithelium, EBV-transformed cancer cells exhibited increased proliferation and inhibited immune response induced by the RPMS1-encoded microRNAs. Our atlas of EBV expression shows that the EBV-transformed cancer cells express high levels of non-coding RNAs originating from RPMS1 and that the oncogenic properties are maintained by RPMS1 microRNAs. Through bioinformatic disentanglement of single cells from cancer tissues we identified a positive feedback loop where EBV-activated immune cells stimulate cancer cells to proliferate, which in turn undergo viral reactivation and trigger an immune response.

3.
J Immunother Cancer ; 11(8)2023 08.
Article in English | MEDLINE | ID: mdl-37648262

ABSTRACT

BACKGROUND: The natural killer (NK) complex (NKC) harbors multiple genes such as KLRC1 (encoding NKG2A) and KLRK1 (encoding NKG2D) that are central to regulation of NK cell function. We aimed at determining to what extent NKC haplotypes impact on NK cell repertoire and function, and whether such gene variants impact on outcome of IL-2-based immunotherapy in acute myeloid leukemia (AML). METHODS: Genotype status of NKG2D rs1049174 and NKG2A rs1983526 was determined using the TaqMan-Allelic discrimination approach. To dissect the impact of single nucloetide polymorphim (SNP) on NK cell function, we engineered the K562 cell line with CRISPR to be killed in a highly NKG2D-dependent fashion. NK cells were assayed for degranulation, intracellular cytokine production and cytotoxicity using flow cytometry. RESULTS: In AML patients receiving immunotherapy, the NKG2A gene variant, rs1983526, was associated with superior leukemia-free survival and overall survival. We observed that superior NK degranulation from individuals with the high-cytotoxicity NKG2D variant was explained by presence of a larger, highly responsive NKG2A+ subset. Notably, NK cells from donors homozygous for a favorable allele encoding NKG2A mounted stronger cytokine responses when challenged with leukemic cells, and NK cells from AML patients with this genotype displayed higher accumulation of granzyme B during histamine dihydrochloride/IL-2 immunotherapy. Additionally, among AML patients, the NKG2A SNP defined a subset of patients with HLA-B-21 TT with a strikingly favorable outcome. CONCLUSIONS: The study results imply that a dimorphism in the NKG2A gene is associated with enhanced NK cell effector function and improved outcome of IL-2-based immunotherapy in AML.


Subject(s)
Interleukin-2 , Leukemia, Myeloid, Acute , Humans , Interleukin-2/genetics , Interleukin-2/pharmacology , Interleukin-2/therapeutic use , NK Cell Lectin-Like Receptor Subfamily K , Alleles , Leukemia, Myeloid, Acute/genetics , Leukemia, Myeloid, Acute/therapy , Cytokines
4.
Front Nutr ; 9: 849811, 2022.
Article in English | MEDLINE | ID: mdl-35369098

ABSTRACT

A long extraction time for traditional cold coffee brewing considerably reduces the production efficiency of this type of beverage. Herein, a new ultrasound-assisted cold brewing (UAC) method was established. The feasibility of UAC was assessed by comparison with main physicochemical characteristics, non-volatile and volatile compounds in coffee extracts produced by hot brewing and conventional static cold brewing methods. Compared to the static cold brews, the levels of total dissolved solids, total lipids, proteins, and titrated acids of UAC coffee extracts increased by 6-26%, 10-21%, 26-31%, and 12-15%, respectively. Caffeine, chlorogenic acid, and trigonelline concentrations were also determined by HPLC. Based on the volatile profiles obtained by HS-SPME-GC/MS, the aroma compounds in UAC was significantly different (p < 0.05) from hot brews but similar to static cold ones, suggesting that ultrasonication compensated for the time of the static cold brewing, thereby considerably shortening the extraction time (1 h vs. 12 h). This work demonstrated that the combination of ultrasound-assisted with cold brew could produce coffee with good flavor and increase the extraction efficiency, which may provide an option for the acceleration of the cold brew coffee process.

5.
Sci Rep ; 12(1): 3378, 2022 03 01.
Article in English | MEDLINE | ID: mdl-35233021

ABSTRACT

Infection in the central nervous system is a severe condition associated with high morbidity and mortality. Despite ample testing, the majority of encephalitis and meningitis cases remain undiagnosed. Metagenomic sequencing of cerebrospinal fluid has emerged as an unbiased approach to identify rare microbes and novel pathogens. However, several major hurdles remain, including establishment of individual limits of detection, removal of false positives and implementation of universal controls. Twenty-one cerebrospinal fluid samples, in which a known pathogen had been positively identified by available clinical techniques, were subjected to metagenomic DNA sequencing. Fourteen samples contained minute levels of Epstein-Barr virus. The detection threshold for each sample was calculated by using the total leukocyte content in the sample and environmental contaminants found in the bioinformatic classifiers. Virus sequences were detected in all ten samples, in which more than one read was expected according to the calculations. Conversely, no viral reads were detected in seven out of eight samples, in which less than one read was expected according to the calculations. False positive pathogens of computational or environmental origin were readily identified, by using a commonly available cell control. For bacteria, additional filters including a comparison between classifiers removed the remaining false positives and alleviated pathogen identification. Here we show a generalizable method for identification of pathogen species using DNA metagenomic sequencing. The choice of bioinformatic method mainly affected the efficiency of pathogen identification, but not the sensitivity of detection. Identification of pathogens requires multiple filtering steps including read distribution, sequence diversity and complementary verification of pathogen reads.


Subject(s)
Epstein-Barr Virus Infections , Cerebrospinal Fluid/microbiology , DNA , Herpesvirus 4, Human/genetics , High-Throughput Nucleotide Sequencing/methods , Humans , Metagenomics/methods , Sequence Analysis, DNA
6.
RNA ; 27(10): 1127-1139, 2021 10.
Article in English | MEDLINE | ID: mdl-34253685

ABSTRACT

Comprehensive characterization of differentially spliced RNA transcripts with nanopore sequencing is limited by bioinformatics tools that are reliant on existing annotations. We have developed FLAME, a bioinformatics pipeline for alternative splicing analysis of gene-specific or transcriptome-wide long-read sequencing data. FLAME is a Python-based tool aimed at providing comprehensible quantification of full-length splice variants, reliable de novo recognition of splice sites and exons, and representation of consecutive exon connectivity in the form of a weighted adjacency matrix. Notably, this workflow circumvents issues related to inadequate reference annotations and allows for incorporation of short-read sequencing data to improve the confidence of nanopore sequencing reads. In this study, the Epstein-Barr virus long noncoding RNA RPMS1 was used to demonstrate the utility of the pipeline. RPMS1 is ubiquitously expressed in Epstein-Barr virus associated cancer and known to undergo ample differential splicing. To fully resolve the RPMS1 spliceome, we combined gene-specific nanopore sequencing reads from a primary gastric adenocarcinoma and a nasopharyngeal carcinoma cell line with matched publicly available short-read sequencing data sets. All previously reported splice variants, including putative ORFs, were detected using FLAME. In addition, 32 novel exons, including two intron retentions and a cassette exon, were discovered within the RPMS1 gene.


Subject(s)
Epstein-Barr Virus Infections/genetics , Herpesvirus 4, Human/genetics , Nasopharyngeal Carcinoma/genetics , Nasopharyngeal Neoplasms/genetics , RNA Splicing , RNA, Long Noncoding/genetics , RNA, Messenger/genetics , Software , Benchmarking , Cell Line, Tumor , Computational Biology/methods , Epstein-Barr Virus Infections/metabolism , Epstein-Barr Virus Infections/pathology , Epstein-Barr Virus Infections/virology , Exons , Herpesvirus 4, Human/pathogenicity , High-Throughput Nucleotide Sequencing , Humans , Introns , Nanopore Sequencing , Nasopharyngeal Carcinoma/metabolism , Nasopharyngeal Carcinoma/pathology , Nasopharyngeal Carcinoma/virology , Nasopharyngeal Neoplasms/metabolism , Nasopharyngeal Neoplasms/pathology , Nasopharyngeal Neoplasms/virology , RNA, Long Noncoding/metabolism , RNA, Messenger/metabolism , RNA, Viral/genetics , RNA, Viral/metabolism , Sequence Analysis, RNA
7.
PLoS Pathog ; 17(4): e1009041, 2021 04.
Article in English | MEDLINE | ID: mdl-33914843

ABSTRACT

Epstein-Barr virus (EBV) is a ubiquitous γ-herpesvirus with latent and lytic cycles. EBV replicates in the stratified epithelium but the nasopharynx is also composed of pseudostratified epithelium with distinct cell types. Latent infection is associated with nasopharyngeal carcinoma (NPC). Here, we show with nasopharyngeal conditionally reprogrammed cells cultured at the air-liquid interface that pseudostratified epithelial cells are susceptible to EBV infection. Donors varied in susceptibility to de novo EBV infection, but susceptible cultures also displayed differences with respect to pathogenesis. The cultures from one donor yielded lytic infection but cells from two other donors were positive for EBV-encoded EBERs and negative for other lytic infection markers. All cultures stained positive for the pseudostratified markers CK7, MUC5AC, α-tubulin in cilia, and the EBV epithelial cell receptor Ephrin receptor A2. To define EBV transcriptional programs by cell type and to elucidate latent/lytic infection-differential changes, we performed single cell RNA-sequencing on one EBV-infected culture that resulted in alignment with many EBV transcripts. EBV transcripts represented a small portion of the total transcriptome (~0.17%). All cell types in the pseudostratified epithelium had detectable EBV transcripts with suprabasal cells showing the highest number of reads aligning to many EBV genes. Several restriction factors (IRF1, MX1, STAT1, C18orf25) known to limit lytic infection were expressed at lower levels in the lytic subcluster. A third of the differentially-expressed genes in NPC tumors compared to an uninfected pseudostratified ALI culture overlapped with the differentially-expressed genes in the latent subcluster. A third of these commonly perturbed genes were specific to EBV infection and changed in the same direction. Collectively, these findings suggest that the pseudostratified epithelium could harbor EBV infection and that the pseudostratified infection model mirrors many of the transcriptional changes imposed by EBV infection in NPC.


Subject(s)
Epithelial Cells/virology , Epstein-Barr Virus Infections/virology , Host-Pathogen Interactions/immunology , Nasopharyngeal Neoplasms/virology , Carcinoma/metabolism , Carcinoma/virology , Epithelial Cells/metabolism , Epithelium/metabolism , Epithelium/virology , Epstein-Barr Virus Infections/metabolism , Herpesvirus 4, Human/genetics , Herpesvirus 4, Human/pathogenicity , Humans , Nasopharyngeal Carcinoma/virology , RNA, Viral/genetics
8.
Mol Omics ; 15(3): 205-215, 2019 06 01.
Article in English | MEDLINE | ID: mdl-31046040

ABSTRACT

The zinc (Zn2+) cofactor has been proven to be involved in numerous biological mechanisms and the zinc-binding site is recognized as one of the most important post-translation modifications in proteins. Therefore, accurate knowledge of zinc ions in protein structures can provide potential clues for elucidation of protein folding and functions. However, determining zinc-binding residues by experimental means is usually lab-intensive and associated with high cost in most cases. In this context, the development of computational tools for identifying zinc-binding sites is highly desired, especially in the current post-genomic era. In this work, we developed a novel zinc-binding site prediction method by combining several intensively-trained machine learning models. To establish an accurate and generative method, we downloaded all zinc-binding proteins from the Protein Data Bank and prepared a non-redundant dataset. Meanwhile, a well-prepared dataset by other groups was also used. Then, effective and complementary features were extracted from sequences and three-dimensional structures of these proteins. Moreover, several well-designed machine learning models were intensively trained to construct accurate models. To assess the performance, the obtained predictors were stringently benchmarked using the diverse zinc-binding sites. Furthermore, several state-of-the-art in silico methods developed specifically for zinc-binding sites were also evaluated and compared. The results confirmed that our method is very competitive in real world applications and could become a complementary tool to wet lab experiments. To facilitate research in the community, a web server and stand-alone program implementing our method were constructed and are publicly available at . The downloadable program of our method can be easily used for the high-throughput screening of potential zinc-binding sites across proteomes.


Subject(s)
Computational Biology/methods , Machine Learning , Zinc/chemistry , Algorithms , Amino Acid Sequence , Binding Sites , Computer Simulation , Databases, Protein , Protein Binding , Protein Conformation , Protein Folding , Software , Support Vector Machine
9.
Genes (Basel) ; 10(3)2019 02 26.
Article in English | MEDLINE | ID: mdl-30813638

ABSTRACT

Hepatitis B virus (HBV) is endemic in Rwanda and is a major etiologic agent for chronic liver disease in the country. In a previous analysis of HBV strains from Rwanda, the S genes of most strains segregated into one single clade of subgenotype, A1. More than half (55%) of the anti-HBe positive individuals were viremic. In this study, 23 complete HBV genomes and the core promoter region (CP) from 18 additional strains were sequenced. Phylogenetic analysis of complete genomes confirmed that most Rwandan strain formed a single unique clade, within subgenotype A1. Strains from 17 of 22 (77%) anti-HBe positive HBV carriers had either mutated the precore start codon (9 strains with either CUG, ACG, UUG, or AAG) or mutations in the Kozak sequence preceding the pre-core start codon (8 strains). These mutually exclusive mutations were also identified in subgenotypes A1 (70/266; 26%), A2 (12/255; 5%), and A3 (26/49; 53%) sequences from the GenBank. The results showed that previous, rarely described HBV variants, expressing little or no HBeAg, are selected in anti-HBe positive subgenotype Al carriers from Rwanda and that mutations reducing HBeAg synthesis might be unique for a particular HBV clade, not just for a specific genotype or subgenotype.


Subject(s)
Hepatitis B virus/classification , Hepatitis B, Chronic/immunology , Mutation , Viral Proteins/genetics , Case-Control Studies , Codon, Initiator , Hepatitis B Antibodies/metabolism , Hepatitis B virus/genetics , Hepatitis B, Chronic/virology , Humans , Phylogeny , Promoter Regions, Genetic , Rwanda
10.
Sheng Wu Gong Cheng Xue Bao ; 35(1): 27-39, 2019 Jan 25.
Article in Chinese | MEDLINE | ID: mdl-30756532

ABSTRACT

Basic research in life science and medicine has dug into single cell level in recent years. Single-cell analysis offers to understand life from diverse perspectives and is used to profile cell heterogeneity to investigate mechanism of diseases. Single cell technologies have also found applications in forensic medicine and clinical reproductive medicine, while the techniques are rapidly evolving and have become more and more sophisticated. In this article, we reviewed various single cell isolation techniques and their pros and cons, including manual cell picking, laser capture microdissection and microfluidics, as well as analysis methods for DNA, RNA and protein in single cell. In addition, we summarized major up-to-date single cell research achievements and their potential applications.


Subject(s)
Single-Cell Analysis , Animals , Cell Separation , DNA , Laser Capture Microdissection , RNA
11.
Nat Commun ; 9(1): 1345, 2018 04 09.
Article in English | MEDLINE | ID: mdl-29632339

ABSTRACT

Branching morphogenesis is a general mechanism that increases the surface area of an organ. In chicken feathers, the flat epithelial sheath at the base of the follicle is transformed into periodic branches. How exactly the keratinocytes are organized into this pattern remains unclear. Here we show that in the feather follicle, the pre-branch basal keratinocytes have extensive filopodia, which contract and smooth out after branching. Manipulating the filopodia via small GTPases RhoA/Cdc42 also regulates branch formation. These basal filopodia help interpret the proximal-distal FGF gradient in the follicle. Furthermore, the topological arrangement of cell adhesion via E-Cadherin re-distribution controls the branching process. Periodic activation of Notch signaling drives the differential cell adhesion and contraction of basal filopodia, which occurs only below an FGF signaling threshold. Our results suggest a coordinated adjustment of cell shape and adhesion orchestrates feather branching, which is regulated by Notch and FGF signaling.


Subject(s)
Avian Proteins/metabolism , Feathers/growth & development , Feathers/metabolism , Fibroblast Growth Factors/metabolism , Receptors, Notch/metabolism , Animals , Cadherins/metabolism , Cell Adhesion , Cell Shape , Cells, Cultured , Chickens , Feathers/cytology , Humans , Keratinocytes/metabolism , Male , Models, Biological , Morphogenesis/physiology , Pseudopodia/metabolism , Signal Transduction
SELECTION OF CITATIONS
SEARCH DETAIL
...