Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 2.529
Filter
1.
Nature ; 630(8015): 84-90, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38840015

ABSTRACT

Direct and precise monitoring of intracranial physiology holds immense importance in delineating injuries, prognostication and averting disease1. Wired clinical instruments that use percutaneous leads are accurate but are susceptible to infection, patient mobility constraints and potential surgical complications during removal2. Wireless implantable devices provide greater operational freedom but include issues such as limited detection range, poor degradation and difficulty in size reduction in the human body3. Here we present an injectable, bioresorbable and wireless metastructured hydrogel (metagel) sensor for ultrasonic monitoring of intracranial signals. The metagel sensors are cubes 2 × 2 × 2 mm3 in size that encompass both biodegradable and stimulus-responsive hydrogels and periodically aligned air columns with a specific acoustic reflection spectrum. Implanted into intracranial space with a puncture needle, the metagel deforms in response to physiological environmental changes, causing peak frequency shifts of reflected ultrasound waves that can be wirelessly measured by an external ultrasound probe. The metagel sensor can independently detect intracranial pressure, temperature, pH and flow rate, realize a detection depth of 10 cm and almost fully degrade within 18 weeks. Animal experiments on rats and pigs indicate promising multiparametric sensing performances on a par with conventional non-resorbable wired clinical benchmarks.


Subject(s)
Hydrogels , Intracranial Pressure , Wireless Technology , Animals , Wireless Technology/instrumentation , Rats , Swine , Monitoring, Physiologic/instrumentation , Monitoring, Physiologic/methods , Hydrogels/chemistry , Male , Ultrasonic Waves , Female , Hydrogen-Ion Concentration , Injections/instrumentation , Brain/physiology , Brain/diagnostic imaging , Temperature , Absorbable Implants , Rats, Sprague-Dawley
2.
Biomicrofluidics ; 18(3): 034106, 2024 May.
Article in English | MEDLINE | ID: mdl-38841318

ABSTRACT

In addition to the common blood and urine, fresh sweat contains a diverse range of physiological indicators that can effectively reflect changes in the body's state. Wearable sweat sensors are crucial for understanding human physiological health; however, real-time in situ measurement of multiple biomarkers in sweat remains a significant challenge. Here, we propose a wearable microfluidic patch featuring an integrated microfluidic channel and evaporation pump for accelerated and continuous sweat collection, eliminating the need for additional sweat storage cavities that typically impede real-time detection. Capillary forces are harnessed to facilitate the rapid flow of sweat through the detection area, while an evaporation pump based on porous laser-induced graphene enhances sweat evaporation. The synergistic integration of these two components enables an uninterrupted flow of fresh sweat within the patch, ensuring real-time monitoring. The influence of channel size parameters on sweat flow velocity is analyzed, and the optimal width-to-height ratio for achieving the desired flow velocity is determined. By implementing a multi-channel parallel design with chamfering, liquid flow resistance is effectively reduced. Furthermore, the patch integrates sensor modules for sodium ion, chloride ion, glucose, and pH value measurements, ensuring excellent sealing and stability of the assembled system. This work presents a simplified approach to developing wearable sweat sensors that hold the potential for health monitoring and disease diagnosis.

3.
Small ; : e2308570, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38716740

ABSTRACT

Soft-lithography is widely used to fabricate microstructured surfaces on plastics and elastomers for designable physical properties such as wetting and adhesions. However, it remains a big challenge to construct high-aspect-ratio microstructures on the surface of hydrogels due to the difficulty in demolding from the gel with low strength and stiffness. Demonstrated here is the engineering of tough hydrogels by soft-lithography to form well-defined micropillars. The mechanical properties of poly(acrylamide-co-methacrylic acid) hydrogels with dense hydrogen-bond associations severely depend on temperature, with Young's modulus increasing from 8.1 MPa at 15 °C to 821.8 MPa at -30 °C, enabling easy demolding at low temperatures. Arrays of micropillars are maintained on the surface of the gel, and can be used at room temperature when the gel restores soft and stretchable. The hydrogel also exhibits good shape-memory property, favoring tailoring the morphology with a switchable tilt angle of micropillars. Consequently, the hydrogel shows tunable wetting and adhesion properties, as manifested by varying contact angles and adhesion strengths. These surface properties can also be tuned by geometry and arrangement of micropillars. This facile strategy by harnessing tunable viscoelasticity of supramolecular hydrogels should be applicable to other soft materials, and broaden their applications in biomedical and engineering fields.

4.
Soft Matter ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38712600

ABSTRACT

Magnetic hydrogel actuators exhibit promising applications in the fields of soft robotics, bioactuators, and flexible sensors owing to their inherent advantages such as remote control capability, untethered deformation and motion control, as well as easily manipulable behavior. However, it is still a challenge for magnetic hydrogels to achieve adjustable stiffness and shape fixation under magnetic field actuation deformation. Herein, a simple and effective approach is proposed for the design of magnetic shape memory hydrogels to accomplish this objective. The magnetic shape memory hydrogels, consisting of methacrylamide, methacrylic acid, polyvinyl alcohol and Fe3O4 magnetic particles, which crosslinked by hydrogen bonds, are facilely prepared via one-pot polymerization. The dynamic nature of noncovalent bonds offers the magnetic hydrogels with excellent mechanical properties, precisely controlled stiffness, and effective shape fixation. The presence of Fe3O4 particles renders the hydrogels soft when subjected to an alternating current field, facilitating their deformation under the influence of an actuation magnetic field. After the elimination of the alternating current magnetic field, the hydrogels stiffen and attain a fixed actuated shape in the absence of any external magnetic field. Moreover, this remarkable magnetic shape memory hydrogel is effectively employed as an underwater soft gripper for lifting heavy objects. This work provides a novel strategy for fabricating magnetic hydrogels with non-contact reversible actuation deformation, tunable stiffness and shape locking.

5.
Chaos ; 34(5)2024 May 01.
Article in English | MEDLINE | ID: mdl-38722729

ABSTRACT

This paper investigates dynamical behaviors and controllability of some nonautonomous localized waves based on the Gross-Pitaevskii equation with attractive interatomic interactions. Our approach is a relation constructed between the Gross-Pitaevskii equation and the standard nonlinear Schrödinger equation through a new self-similarity transformation which is to convert the exact solutions of the latter to the former's. Subsequently, one can obtain the nonautonomous breather solutions and higher-order rogue wave solutions of the Gross-Pitaevskii equation. It has been shown that the nonautonomous localized waves can be controlled by the parameters within the self-similarity transformation, rather than relying solely on the nonlinear intensity, spectral parameters, and external potential. The control mechanism can induce an unusual number of loosely bound higher-order rogue waves. The asymptotic analysis of unusual loosely bound rogue waves shows that their essence is energy transfer among rogue waves. Numerical simulations test the dynamical stability of obtained localized wave solutions, which indicate that modifying the parameters in the self-similarity transformation can improve the stability of unstable localized waves and prolong their lifespan. We numerically confirm that the rogue wave controlled by the self-similarity transformation can be reproduced from a chaotic initial background field, hence anticipating the feasibility of its experimental observation, and propose an experimental method for observing these phenomena in Bose-Einstein condensates. The method presented in this paper can help to induce and observe new stable localized waves in some physical systems.

6.
Mol Neurobiol ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38775879

ABSTRACT

Autophagy is an intracellular recycling process that maintains cellular homeostasis by degrading excess or defective macromolecules and organelles. Chaperone-mediated autophagy (CMA) is a highly selective form of autophagy in which a substrate containing a KFERQ-like motif is recognized by a chaperone protein, delivered to the lysosomal membrane, and then translocated to the lysosome for degradation with the assistance of lysosomal membrane protein 2A. Normal CMA activity is involved in the regulation of cellular proteostasis, metabolism, differentiation, and survival. CMA dysfunction disturbs cellular homeostasis and directly participates in the pathogenesis of human diseases. Previous investigations on CMA in the central nervous system have primarily focus on neurodegenerative diseases, such as Parkinson's disease and Alzheimer's disease. Recently, mounting evidence suggested that brain injuries involve a wider range of types and severities, making the involvement of CMA in the bidirectional processes of damage and repair even more crucial. In this review, we summarize the basic processes of CMA and its associated regulatory mechanisms and highlight the critical role of CMA in brain injury such as cerebral ischemia, traumatic brain injury, and other specific brain injuries. We also discuss the potential of CMA as a therapeutic target to treat brain injury and provide valuable insights into clinical strategies.

7.
Technol Cancer Res Treat ; 23: 15330338241254059, 2024.
Article in English | MEDLINE | ID: mdl-38725285

ABSTRACT

Objective: Primary squamous cell thyroid carcinoma (PSCTC) is an extremely rare carcinoma, accounting for less than 1% of all thyroid carcinomas. However, the factors contributing to PSCTC outcomes remain unclear. This study aimed to identify the prognostic factors and develop a prognostic predictive model for patients with PSCTC. Methods: The analysis included patients diagnosed with thyroid carcinoma between 1975 and 2016 from the Surveillance, Epidemiology, and End Results database. Prognostic differences among the 5 pathological types of thyroid carcinomas were analyzed. To determine prognostic factors in PSCTC patients, the Cox regression model and Fine-Gray competing risk model were utilized. Based on the Fine-Gray competing risk model, a nomogram was established for predicting the prognosis of patients with PSCTC. Results: A total of 198,757 thyroid carcinoma patients, including 218 PSCTC patients, were identified. We found that PSCTC and anaplastic thyroid cancer had the worst prognosis among the 5 pathological types of thyroid carcinoma (P < .001). According to univariate and multivariate Cox regression analyses, age (71-95 years) was an independent risk factor for poorer overall survival and disease-specific survival in PSCTC patients. Using Fine-Gray regression analysis, the total number of in situ/malignant tumors for patient (Number 1) (≥2) was identified as an independent protective factor for prognosis of PSCTC. The area under the curve, the concordance index (C-index), calibration curves and decision curve analysis revealed that the nomogram was capable of predicting the prognosis of PSCTC patients accurately. Conclusion: The competing risk nomogram is highly accurate in predicting prognosis for patients with PSCTC, which may help clinicians to optimize individualized treatment decisions.


Subject(s)
Carcinoma, Squamous Cell , Nomograms , SEER Program , Thyroid Neoplasms , Humans , Male , Female , Thyroid Neoplasms/pathology , Thyroid Neoplasms/mortality , Thyroid Neoplasms/diagnosis , Prognosis , Aged , Middle Aged , Aged, 80 and over , Carcinoma, Squamous Cell/pathology , Carcinoma, Squamous Cell/mortality , Adult , Risk Factors , Proportional Hazards Models , Risk Assessment , Neoplasm Staging , Kaplan-Meier Estimate
8.
Magn Reson Med ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38730562

ABSTRACT

PURPOSE: T1 mapping is a widely used quantitative MRI technique, but its tissue-specific values remain inconsistent across protocols, sites, and vendors. The ISMRM Reproducible Research and Quantitative MR study groups jointly launched a challenge to assess the reproducibility of a well-established inversion-recovery T1 mapping technique, using acquisition details from a seminal T1 mapping paper on a standardized phantom and in human brains. METHODS: The challenge used the acquisition protocol from Barral et al. (2010). Researchers collected T1 mapping data on the ISMRM/NIST phantom and/or in human brains. Data submission, pipeline development, and analysis were conducted using open-source platforms. Intersubmission and intrasubmission comparisons were performed. RESULTS: Eighteen submissions (39 phantom and 56 human datasets) on scanners by three MRI vendors were collected at 3 T (except one, at 0.35 T). The mean coefficient of variation was 6.1% for intersubmission phantom measurements, and 2.9% for intrasubmission measurements. For humans, the intersubmission/intrasubmission coefficient of variation was 5.9/3.2% in the genu and 16/6.9% in the cortex. An interactive dashboard for data visualization was also developed: https://rrsg2020.dashboards.neurolibre.org. CONCLUSION: The T1 intersubmission variability was twice as high as the intrasubmission variability in both phantoms and human brains, indicating that the acquisition details in the original paper were insufficient to reproduce a quantitative MRI protocol. This study reports the inherent uncertainty in T1 measures across independent research groups, bringing us one step closer to a practical clinical baseline of T1 variations in vivo.

9.
Adv Mater ; : e2402903, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710094

ABSTRACT

The rapid growth of sensor data in the artificial intelligence often causes significant reductions in processing speed and power efficiency. Addressing this challenge, in-sensor computing is introduced as an advanced sensor architecture that simultaneously senses, memorizes, and processes images at the sensor level. However, this is rarely reported for organic semiconductors that possess inherent flexibility and tunable bandgap. Herein, an organic heterostructure that exhibits a robust photoresponse to near-infrared (NIR) light is introduced, making it ideal for in-sensor computing applications. This heterostructure, consisting of partially overlapping p-type and n-type organic thin films, is compatible with conventional photolithography techniques, allowing for high integration density of up to 520 devices cm-2 with a 5 µm channel length. Importantly, by modulating gate voltage, both positive and negative photoresponses to NIR light (1050 nm) are attained, which establishes a linear correlation between responsivity and gate voltage and consequently enables real-time matrix multiplication within the sensor. As a result, this organic heterostructure facilitates efficient and precise NIR in-sensor computing, including image processing and nondestructive reading and classification, achieving a recognition accuracy of 97.06%. This work serves as a foundation for the development of reconfigurable and multifunctional NIR neuromorphic vision systems.

10.
Ultrasound Med Biol ; 2024 May 25.
Article in English | MEDLINE | ID: mdl-38796339

ABSTRACT

OBJECTIVE: It was previously believed that atherosclerotic (AS) plaque starts to develop from the intima and that intraplaque vasa vasorum (VV) hyperplasia promotes adventitial VV (AVV) hyperplasia. However, recent studies have shown that arterial AVV hyperplasia precedes early intimal thickening, suggesting its possible role as an initiating factor of AS. To provide further insight into this process, in this study, we examine the evolution of AAV and VV development in a preclinical model of early AS with longitudinal ultrasound imaging. METHODS: Models of early AS were established. Duplex ultrasound scanning and contrast-enhanced ultrasound were performed for diagnosis. Pearson correlation tests were used to analyze the relationships between AVV hyperplasia and VV hyperplasia, or between AVV hyperplasia and intima-media thickness (IMT). RESULTS: During 0-12 wk of high-fat feeding, AVV gradually increased and intima-media thickened gradually in the observation area; in the 2nd wk of high-fat feeding, the observation area showed obvious AVV proliferation; at the 4th wk, the intima-media membrane became thicker; at the 12th wk, early plaque formation and intraplaque VV proliferation were observed. There was a strong positive correlation between AVV proliferation and IMT thickening and a strong negative correlation between AVV proliferation and the change rate of vessel diameter. CONCLUSION: This study demonstrated that AVV proliferation in the arteries occurred earlier than IMT thickening and was positively correlated with IMT. At present, the indicators of ultrasonic diagnosis of AS, such as IMT, Intraplaque VV, Echo property, all appear in the advanced stage of AS. The AVV may be an innovative diagnostic target for the early stage of AS plaque.

11.
JMIR Public Health Surveill ; 10: e56593, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810253

ABSTRACT

BACKGROUND: The HIV-1 molecular network is an innovative tool, using gene sequences to understand transmission attributes and complementing social and sexual network studies. While previous research focused on static network characteristics, recent studies' emphasis on dynamic features enhances our understanding of real-time changes, offering insights for targeted interventions and efficient allocation of public health resources. OBJECTIVE: This study aims to identify the dynamic changes occurring in HIV-1 molecular transmission networks and analyze the primary influencing factors driving the dynamics of HIV-1 molecular networks. METHODS: We analyzed and compared the dynamic changes in the molecular network over a specific time period between the baseline and observed end point. The primary factors influencing the dynamic changes in the HIV-1 molecular network were identified through univariate analysis and multivariate analysis. RESULTS: A total of 955 HIV-1 polymerase fragments were successfully amplified from 1013 specimens; CRF01_AE and CRF07_BC were the predominant subtypes, accounting for 40.8% (n=390) and 33.6% (n=321) of the specimens, respectively. Through the analysis and comparison of the basic and terminal molecular networks, it was discovered that 144 sequences constituted static molecular networks, and 487 sequences contributed to the formation of dynamic molecular networks. The findings of the multivariate analysis indicated that the factors occupation as a student, floating population, Han ethnicity, engagement in occasional or multiple sexual partnerships, participation in anal sex, and being single were independent risk factors for the dynamic changes observed in the HIV-1 molecular network, and the odds ratio (OR; 95% CIs) values were 2.63 (1.54-4.47), 1.83 (1.17-2.84), 2.91 (1.09-7.79), 1.75 (1.06-2.90), 4.12 (2.48-6.87), 5.58 (2.43-12.80), and 2.10 (1.25-3.54), respectively. Heterosexuality and homosexuality seem to exhibit protective effects when compared to bisexuality, with OR values of 0.12 (95% CI 0.05-0.32) and 0.26 (95% CI 0.11-0.64), respectively. Additionally, the National Eight-Item score and sex education experience were also identified as protective factors against dynamic changes in the HIV-1 molecular network, with OR values of 0.12 (95% CI 0.05-0.32) and 0.26 (95% CI 0.11-0.64), respectively. CONCLUSIONS: The HIV-1 molecular network analysis showed 144 sequences in static networks and 487 in dynamic networks. Multivariate analysis revealed that occupation as a student, floating population, Han ethnicity, and risky sexual behavior were independent risk factors for dynamic changes, while heterosexuality and homosexuality were protective compared to bisexuality. A higher National Eight-Item score and sex education experience were also protective factors. The identification of HIV dynamic molecular networks has provided valuable insights into the characteristics of individuals undergoing dynamic alterations. These findings contribute to a better understanding of HIV-1 transmission dynamics and could inform targeted prevention strategies.


Subject(s)
HIV Infections , HIV-1 , Humans , Cross-Sectional Studies , HIV Infections/transmission , HIV Infections/epidemiology , Male , HIV-1/genetics , Female , Adult , Middle Aged
12.
Talanta ; 276: 126288, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38781916

ABSTRACT

Gizzerosine is a biogenic amine produced in fish meal drying process and posted higher mortality due to gizzard erosion in poultry than histamine. However, it is difficult to obtain gizzerosine and achieve sensitive practical detection due to its simple structure. Herein, a monoclonal antibody (mAb) specific to gizzerosine was generated based on the new structural design and a fluorescence immunosensor for sensitive and on-site detection of gizzerosine in feed was first established. Molecular modeling of the three-dimensional (3D) structure and surface electrostatic potential of gizzerosine indicated that the carbonyl group of gizzerosine hapten might affect the important sites of antigen-antibody interactions. The proposed structure was used to obtain the sensitive and specific mAb with IC50 of 3.88 ng/mL in indirect competitive ELISA which was approximately 100-fold lower than that of direct competitive ELISA. Considering the practical application scenarios, a fluorescence immunosensor based on microporous dry method integrated with independent quality control line was established to improve detection stability. Under the optimum conditions, the proposed immunosensor showed a good linear relationship from 1.10 to 19.78 ng/mL and provided a low detection limit of 50 ng/g which was approximately 80-fold lower than the maximum recommended amount (0.4 mg/kg) of gizzerosine in feed. The recoveries of 6 kinds of feed ranged from 83.1 % to 114.3 %, which was in good consistence with that of UHPLC-MS/MS. Overall, this work provides a fast, cost-effective and reliable on-site tool for rapid screening of gizzerosine residues in feed samples.

13.
Free Radic Biol Med ; 221: 203-214, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38788982

ABSTRACT

Sepsis-associated encephalopathy (SAE) is a severe complication that affects the central nervous system and is a leading cause of increased morbidity and mortality in intensive care units. Psoralidin (PSO), a coumarin compound isolated from the traditional Chinese medicine Psoralea corylifolia L., can penetrate the blood-brain barrier and has various pharmacological activities, including anti-inflammation, anti-oxidation and anti-depression. This study aims to explore whether PSO alleviates SAE and delve into the underlying mechanisms. We found that PSO treatment significantly reduced sepsis scores, aspartate transaminase (AST) and aspartate transaminase (LDH), while increased anal temperature and neurological scores in CLP-injured mice. Moreover, PSO treatment ameliorated sepsis-associated cognitive impairment, mood, anxiety disorders, inhibited inflammatory responses, as well as attenuated endoplasmic reticulum stress (ERS). These results were also validated in vitro experiments, PSO treatment reduced ROS, inflammation response, and attenuated ERS in LPS-injured N2a cells. Importantly, tunicamycin (TUN), as ERS agonist, significantly reversed the protective effect of PSO on LPS-injured N2a cells, as evidenced by increased expression levels of IL-6, NLRP3, CHOP, and ATF6. Likewise, ATF6 overexpression also reversed the protective effect of PSO. In conclusion, these results confirmed that PSO has a protective effect on SAE, which was largely attributed to neuroinflammation and ERS. These findings provide new insights into the neuroprotective role of PSO and suggest that PSO is a new therapeutic intervention of SAE.

14.
BMJ Open ; 14(5): e078763, 2024 May 13.
Article in English | MEDLINE | ID: mdl-38740497

ABSTRACT

OBJECTIVES: There was no evidence regarding the relationship between septic shock and tracheal injury scores. Investigate whether septic shock was independently associated with tracheal injury scores in intensive care unit (ICU) patients with invasive ventilation. DESIGN: Prospective observational cohort study. SETTING: Our study was conducted in a Class III hospital in Hebei province, China. PARTICIPANTS: Patients over 18 years of age admitted to the ICU between 31 May 2020 and 3 May 2022 with a tracheal tube and expected to be on the tube for more than 24 hours. PRIMARY AND SECONDARY OUTCOME MEASURES: Tracheal injuries were evaluated by examining hyperaemia, ischaemia, ulcers and tracheal perforation by fiberoptic bronchoscope. Depending on the number of lesions, the lesions were further classified as moderate, severe or confluent. RESULTS: Among the 97 selected participants, the average age was 56.6±16.5 years, with approximately 64.9% being men. The results of adjusted linear regression showed that septic shock was associated with tracheal injury scores (ß: 2.99; 95% CI 0.70 to 5.29). Subgroup analysis revealed a stronger association with a duration of intubation ≥8 days (p=0.013). CONCLUSION: Patients with septic shock exhibit significantly higher tracheal injury scores compared with those without septic shock, suggesting that septic shock may serve as an independent risk factor for tracheal injury. TRIAL REGISTRATION NUMBER: ChiCTR2000037842, registered 03 September 2020. Retrospectively registered, https://www.chictr.org.cn/edit.aspx?pid=57011&htm=4.


Subject(s)
Intensive Care Units , Intubation, Intratracheal , Respiration, Artificial , Shock, Septic , Trachea , Humans , Male , Middle Aged , Female , Shock, Septic/complications , Prospective Studies , China/epidemiology , Trachea/injuries , Respiration, Artificial/adverse effects , Intubation, Intratracheal/adverse effects , Aged , Adult , Bronchoscopy
15.
Fish Shellfish Immunol ; 150: 109603, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38704112

ABSTRACT

Infection-induced hemolysis results in intravascular hemolysis, which releases hemoglobin (Hb) into the tissues. Free Hb exhibits cytotoxic, oxidative, and pro-inflammatory effects, leading to systemic inflammation, vascular constriction dysfunction, thrombosis, and proliferative vascular lesions. Currently, the impact of intravascular hemolysis on the middle kidney in fish is unclear. Here, the injection of phenylhydrazine (PHZ) was used to establish a persistent hemolysis model in grass carp. The determination results revealed that the PHZ-induced hemolysis caused conspicuous tissue damage in the kidneys of grass carp, increased the levels of Cr in the serum and the expression indicators of kidney injury-related genes in the middle kidney. Prussian blue staining indicated that PHZ-induced hemolysis significantly increased the deposition of iron ions in the kidneys of grass carp, and activated the expression levels of iron metabolism-related genes. The results of oxidative damage-related experiments indicate that under PHZ treatment, the activity of middle kidney cells decreases, and the production of oxidative damage markers malondialdehyde (MDA) and 4-hydroxynonenal (4-HNE) increases, simultaneously inhibiting the activity of antioxidant enzymes and upregulating the transcription levels of antioxidant enzyme-related genes. Additionally, the analysis of inflammatory factors revealed a significant upregulation of genes associated with inflammation induced by PHZ-induced hemolysis. The transcriptome analysis was performed to further explore the molecular regulatory effects of hemolysis on tissues, the analysis revealed the treatment of PHZ activated various of programmed cell death (PCD) pathways, including ferroptosis, apoptosis, and autophagy. In summary, this study found that sustained hemolysis in fish results in Hb and iron ion deposition in middle kidney, promoting oxidative damage, ultimately inducing various forms of PCD.

16.
Gut Microbes ; 16(1): 2347722, 2024.
Article in English | MEDLINE | ID: mdl-38706205

ABSTRACT

The intestine is prone to radiation damage in patients undergoing radiotherapy for pelvic tumors. However, there are currently no effective drugs available for the prevention or treatment of radiation-induced enteropathy (RIE). In this study, we aimed at investigating the impact of indole-3-carboxaldehyde (I3A) derived from the intestinal microbiota on RIE. Intestinal organoids were isolated and cultivated for screening radioprotective tryptophan metabolites. A RIE model was established using 13 Gy whole-abdominal irradiation in male C57BL/6J mice. After oral administration of I3A, its radioprotective ability was assessed through the observation of survival rates, clinical scores, and pathological analysis. Intestinal stem cell survival and changes in the intestinal barrier were observed through immunofluorescence and immunohistochemistry. Subsequently, the radioprotective mechanisms of I3A was investigated through 16S rRNA and transcriptome sequencing, respectively. Finally, human colon cancer cells and organoids were cultured to assess the influence of I3A on tumor radiotherapy. I3A exhibited the most potent radioprotective effect on intestinal organoids. Oral administration of I3A treatment significantly increased the survival rate in irradiated mice, improved clinical and histological scores, mitigated mucosal damage, enhanced the proliferation and differentiation of Lgr5+ intestinal stem cells, and maintained intestinal barrier integrity. Furthermore, I3A enhanced the abundance of probiotics, and activated the AhR/IL-10/Wnt signaling pathway to promote intestinal epithelial proliferation. As a crucial tryptophan metabolite, I3A promotes intestinal epithelial cell proliferation through the AhR/IL-10/Wnt signaling pathway and upregulates the abundance of probiotics to treat RIE. Microbiota-derived I3A demonstrates potential clinical application value for the treatment of RIE.


Subject(s)
Gastrointestinal Microbiome , Indoles , Mice, Inbred C57BL , Probiotics , Receptors, Aryl Hydrocarbon , Wnt Signaling Pathway , Animals , Mice , Gastrointestinal Microbiome/drug effects , Male , Humans , Probiotics/administration & dosage , Probiotics/pharmacology , Receptors, Aryl Hydrocarbon/metabolism , Indoles/metabolism , Indoles/pharmacology , Radiation-Protective Agents/pharmacology , Organoids/metabolism , Radiation Injuries/metabolism , Radiation Injuries/prevention & control , Intestinal Mucosa/metabolism , Intestinal Mucosa/microbiology , Intestinal Mucosa/radiation effects , Intestines/microbiology , Intestines/radiation effects , Basic Helix-Loop-Helix Transcription Factors/metabolism , Basic Helix-Loop-Helix Transcription Factors/genetics
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 318: 124454, 2024 Oct 05.
Article in English | MEDLINE | ID: mdl-38788500

ABSTRACT

For species identification analysis, methods based on deep learning are becoming prevalent due to their data-driven and task-oriented nature. The most commonly used convolutional neural network (CNN) model has been well applied in Raman spectra recognition. However, when faced with similar molecules or functional groups, the features of overlapping peaks and weak peaks may not be fully extracted using the CNN model, which can potentially hinder accurate species identification. Based on these practical challenges, the fusion of multi-modal data can effectively meet the comprehensive and accurate analysis of actual samples when compared with single-modal data. In this study, we propose a double-branch CNN model by integrating Raman and image multi-modal data, named SI-DBNet. In addition, we have developed a one-dimensional convolutional neural network combining dilated convolutions and efficient channel attention mechanisms for spectral branching. The effectiveness of the model has been demonstrated using the Grad-CAM method to visualize the key regions concerned by the model. When compared to single-modal and multi-modal classification methods, our SI-DBNet model achieved superior performance with a classification accuracy of 98.8%. The proposed method provided a new reference for species identification based on multi-modal data fusion.

18.
Nature ; 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778112

ABSTRACT

Ice surfaces are closely relevant to many physical and chemical properties, such as melting, freezing, friction, gas uptake and atmospheric reaction1-8. Despite extensive experimental and theoretical investigations9-17, the exact atomic structures of ice interfaces remain elusive owing to the vulnerable hydrogen-bonding network and the complicated premelting process. Here we realize atomic-resolution imaging of the basal (0001) surface structure of hexagonal water ice (ice Ih) by using qPlus-based cryogenic atomic force microscopy with a carbon monoxide-functionalized tip. We find that the crystalline ice-Ih surface consists of mixed Ih- and cubic (Ic)-stacking nanodomains, forming 19 × 19 periodic superstructures. Density functional theory reveals that this reconstructed surface is stabilized over the ideal ice surface mainly by minimizing the electrostatic repulsion between dangling OH bonds. Moreover, we observe that the ice surface gradually becomes disordered with increasing temperature (above 120 Kelvin), indicating the onset of the premelting process. The surface premelting occurs from the defective boundaries between the Ih and Ic domains and can be promoted by the formation of a planar local structure. These results put an end to the longstanding debate on ice surface structures and shed light on the molecular origin of ice premelting, which may lead to a paradigm shift in the understanding of ice physics and chemistry.

19.
Cytokine ; 179: 156633, 2024 07.
Article in English | MEDLINE | ID: mdl-38733947

ABSTRACT

BACKGROUND: Previous investigations have explored the associations between immune cell signatures and osteoarthritis (OA); however, causality remains unclear. This study employs an integrated analysis, combining bidirectional Mendelian randomization (MR) and Bayesian colocalization (Coloc), to investigate causal relationships between 731 immune cells signatures and OA, identifying shared causal variants. METHODS: Utilizing publicly available summary data, this study primarily employs inverse variance weighting (IVW). Supplementary methods include MR-Egger regression, weighted median, weight mode, and simple mode. Various sensitivity tests, including Cochran's Q test, MR pleiotropy Residual Sum and Outlier, and leave-one-out tests, were conducted to assess the robustness of the analysis results. Coloc was employed to identify shared causal genetic variants among potential associations. RESULTS: IVW analysis revealed 196 immune cell signatures potentially linked to OA across diverse subtypes. Reverse MR analyses indicated the causal impact of OA on the levels of 140 immune cell signatures, with subtype-specific variations. Notably, several specific associations, including CD64 on CD14-CD16 + monocyte for Hip OA (OR = 1.0593, 95 % CI: 1.0260-1.0938, P = 0.0004), HLA-DR on CD14 + CD16- monocyte (OR = 0.9664, 95 % CI: 0.9497-0.9834, P = 0.0001), HLA-DR on CD14 + monocyte (OR = 0.9680, 95 % CI: 0.9509-0.9853, P = 0.0003) in the Knee or Hip OA, PDL-1 on CD14-CD16 + monocyte by All OA (OR = 1.7091, 95 %CI:1.2494-2.3378, P = 0.0008), and herpesvirus entry mediator on effector memory CD4 + T cell by Spine OA (OR = 0.5200, 95 %CI:0.3577-0.7561, P = 0.0006) remained significant post-Bonferroni correction. Sensitivity tests validated the credibility of the IVW analysis. Additionally, Coloc revealed several potential associations among shared genetic variants, including rs115328872, rs1800973, and rs317667. CONCLUSIONS: Our findings provide evidence for the potential involvement of immune cell signatures in OA development, revealing avenues for early prevention and innovative therapeutic strategies.


Subject(s)
Bayes Theorem , Mendelian Randomization Analysis , Osteoarthritis , Humans , Mendelian Randomization Analysis/methods , Osteoarthritis/genetics , Osteoarthritis/immunology , Monocytes/metabolism , Monocytes/immunology , Genetic Predisposition to Disease , Polymorphism, Single Nucleotide/genetics
20.
Int J Biol Macromol ; 271(Pt 2): 132588, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788878

ABSTRACT

Interface residues at sites of protein-protein interaction (PPI) are the focus for affinity optimisation. However, protein hydrophobic cores (HCs) play critical roles and shape the protein surface. We hypothesise that manipulating protein HCs can enhance PPI interaction affinities. A cell stress molecule, major histocompatibility complex class I chain-related protein A (MICA), binds to the natural killer group 2D (NKG2D) homodimer to form three molecule interactions. MICA was used as a study subject to support our hypothesis. We redesigned MICA HCs by directed mutagenesis and isolated high-affinity variants through a newly designed partial-denature panning (PDP) method. A few mutations in MICA HCs increased the NKG2D-MICA interaction affinity by 325-5613-fold. Crystal structures of the NKG2D-MICA variant complexes indicated that mutagenesis of MICA HCs stabilised helical elements for decreasing intermolecular interactive free energy (ΔG) of the NKG2D-MICA heterotrimer. The repacking of MICA HC mutants maintained overall surface residues and the authentic binding specificity of MICA. In conclusion, this study provides a new method for MICA redesign and affinity optimisation through HC manipulation without mutating PPI interface residues. Our study introduces a novel approach to protein manipulation, potentially expanding the toolkit for protein affinity optimisation.

SELECTION OF CITATIONS
SEARCH DETAIL
...