Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Micromachines (Basel) ; 14(8)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37630139

ABSTRACT

Grinding is a critical surface-finishing process in the manufacturing industry. One of the challenging problems is that the specific grinding energy is greater than in ordinary procedures, while energy efficiency is lower. However, an integrated energy model and analysis of energy distribution during grinding is still lacking. To bridge this gap, the grinding time history is first built to describe the cyclic movement during air-cuttings, feedings, and cuttings. Steady and transient power features during high-speed rotations along the spindle and repeated intermittent feeding movements along the x-, y-, and z-axes are also analysed. Energy prediction models, which include specific movement stages such as cutting-in, stable cutting, and cutting-out along the spindle, as well as infeed and turning along the three infeed axes, are then established. To investigate model parameters, 10 experimental groups were analysed using the Gauss-Newton gradient method. Four testing trials demonstrate that the accuracy of the suggested model is acceptable, with errors of 5%. Energy efficiency and energy distributions for various components and motion stages are also analysed. Low-power chip design, lightweight worktable utilization, and minimal lubricant quantities are advised. Furthermore, it is an excellent choice for optimizing grinding parameters in current equipment.

2.
Micromachines (Basel) ; 13(8)2022 Aug 08.
Article in English | MEDLINE | ID: mdl-36014200

ABSTRACT

Titanium alloy is a typical difficult-to-machine material with features of superhigh strength and hardness, and low elastic modulus. It is difficult to guarantee the processing quality and efficiency due to the high cutting force and tool wear in conventional cutting. Elliptical vibration cutting (EVC) as an effective method can improve the machinability of titanium alloys. In this paper, the finite element method (FEM) was adopted to study the cutting force and residual stress of 3D EVC in machining of Ti6Al4V. The Johnson-Cook constitutive model was utilized to illustrate the plastic behavior of Ti6Al4V alloy. The kinematics of the 3D EVC was described, and then the influence of various cutting speeds, vibration amplitudes, vibration frequencies and depths of cut on cutting force and residual stress were carried out and analyzed. The simulation results show that the cutting speed, vibration amplitude a, vibration frequency and depth of cut have larger effect on principal force. In addition, the compressive stress layer can be easily obtained near the machined surface by using 3D EVC, which is helpful to improve the working performance of workpiece.

3.
Micromachines (Basel) ; 12(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34357237

ABSTRACT

Based on the clustering effect of shear-thickening fluids (STFs), a high-shear low-pressure flexible grinding wheel has been developed. In order to explore the material removal mechanism, the coupled Eulerian-Lagrangian (CEL) method is adopted to simulate the novel grinding process. The simulation results show that particle clustering effects do occur at the tangential and bottom positions of the micro-convex peak when it instantaneously strikes the workpiece surface. The particle clusters drive the harder abrasive particles to resist the strong interactions of micro-convex peaks. The micro-convex peaks are removed due to the cutting effect of the harder abrasive particles. Compared with traditional grinding, the ratio of tangential force to normal force for the high-shear low-pressure flexible grinding wheel is improved. The various trends in force ratio are consistent with the experimental results, which verifies the effectiveness of high-shear low-pressure grinding.

4.
Materials (Basel) ; 13(4)2020 Feb 24.
Article in English | MEDLINE | ID: mdl-32102418

ABSTRACT

Considering that iron-based super alloy is a kind of difficult-to-cut material, it is easy to produce work hardening and serious tool wear during machining. Therefore, this work aims to explore the chip change characteristics and tool wear mechanism during the processing of iron-based super alloy, calculate the fractal dimensions of chip morphology and tool wear morphology, and use fractals to analyze their change trend. Meanwhile, a new cutting tool with a super ZX coating is used for a high-speed dry turning experiment. The results indicate that the morphology of the chip is saw-tooth, and its color changes gradually, due to the oxidation reaction. The main wear mechanisms of the tool involve abrasive wear, adhesive wear, oxidation wear, coating spalling, microcracking and chipping. The fractal dimension of the tool wear surface and chip is increased with the improvement of cutting speed. This work investigates the fractal characteristics of chip morphology and tool wear morphology. The fractal dimension changes regularly with the change of tool wear, which plays an important role in predicting this tool wear. It is also provides some guidance for the efficient processing of an iron-based super alloy.

SELECTION OF CITATIONS
SEARCH DETAIL
...