Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 5834, 2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37730714

ABSTRACT

Evidence of fluctuations in transport have long been predicted in 3He. They are expected to contribute only within 100µK of Tc and play a vital role in the theoretical modeling of ordering; they encode details about the Fermi liquid parameters, pairing symmetry, and scattering phase shifts. It is expected that they will be of crucial importance for transport probes of the topologically nontrivial features of superfluid 3He under strong confinement. Here we characterize the temperature and pressure dependence of the fluctuation signature, by monitoring the quality factor of a quartz tuning fork oscillator. We have observed a fluctuation-driven reduction in the viscosity of bulk 3He, finding data collapse consistent with the predicted theoretical behavior.

2.
Phys Rev Lett ; 126(23): 236401, 2021 Jun 11.
Article in English | MEDLINE | ID: mdl-34170159

ABSTRACT

We apply ^{125}Te nuclear magnetic resonance (NMR) spectroscopy to investigate the Dirac semimetal ZrTe_{5}. With the NMR magnetic field parallel to the b axis, we observe significant quantum magnetic effects. These include an abrupt drop at 150 K in spin-lattice relaxation rate. This corresponds to a gap-opening transition in the Dirac carriers, likely indicating the onset of excitonic pairing. Below 50 K, we see a more negative shift for the Te_{z} bridging site, indicating the repopulation of Dirac levels with spin polarized carriers at these temperatures. This is the previously reported 3D quantum Hall regime; however, we see no sign of a charge density wave as has been proposed.

3.
Phys Rev Lett ; 126(21): 215301, 2021 May 28.
Article in English | MEDLINE | ID: mdl-34114839

ABSTRACT

We examine the discontinuous first-order superfluid ^{3}He A to B transition in the vicinity of the polycritical point (2.232 mK and 21.22 bar). We find path-dependent transitions: cooling at fixed pressure yields a well-defined transition line in the temperature-pressure plane, but this line can be reliably crossed by depressurizing at nearly constant temperature after transiting T_{c} at a higher pressure. This path dependence is not consistent with any of the standard B-phase nucleation mechanisms in the literature. This symmetry breaking transition is a potential simulator for first order transitions in the early Universe.

4.
Inorg Chem ; 59(20): 15144-15153, 2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33021788

ABSTRACT

In this paper, the hyperkagome lattice of Gd spins in a garnet compound, Gd3CrGa4O12, is studied using bulk measurements and density functional computations, and the observation of large magnetocaloric effect corresponding to an entropy change, ΔSm = 45 J kg-1K-1 (≈ 45 J mol-1K-1) at 2 K, 8 T is reported. Though the compound defies long-range magnetic order down to 0.4 K, a broad feature below 10 K is observed in the specific heat with two low temperature anomalies at T* ≈ 0.7 K and TS ≈ 2.45 K. The anomaly at T* is reminiscent of one in Gd3Ga5O12, where it is related to the development of a complex magnetic phase, whereas the TS-peak is accounted for by a multilevel Schottky-like model. The spin-lattice relaxation times studied by nuclear magnetic resonance experiments show that the relaxation is dominated by the magnetic fluctuations in Cr which has a longer relaxation time compared to that of the garnet, Lu3CrGa4O12 containing a nonmagnetic rare earth. Our first-principles density functional theory calculations agree well with the experimental results and support short-range magnetic order in the Gd-sublattice and antiferromagnetism in the Cr-sublattice. The importance of spin fluctuations and short-range order in the rare earth and transition metal lattices in garnets resulting in large magnetocaloric effect is brought out through this work.

5.
ACS Appl Mater Interfaces ; 10(42): 36010-36017, 2018 Oct 24.
Article in English | MEDLINE | ID: mdl-30251531

ABSTRACT

We present a 63Cu and 65Cu NMR study of Cu12Sb4S13, the basis for tetrahedrite thermoelectric materials. In addition to electronic changes observed at the Tc = 88 K metal-insulator transition, we find that locally there are significant structural changes occurring as the temperature extends above Tc, which we associate with Cu atom displacements away from symmetry positions. Spin-lattice relaxation rates (1/ T1) are dominated by a quadrupolar process indicating anharmonic vibrational dynamics both above and below Tc. We used a quasiharmonic approximation for localized anharmonic oscillators to analyze the impact of Cu rattling. The results demonstrate that Cu-atom rattling dynamics extends unimpeded in the distorted structural configuration below Tc and provide a direct measure of the anharmonic potential well.

6.
Phys Chem Chem Phys ; 20(34): 21960-21967, 2018 Aug 29.
Article in English | MEDLINE | ID: mdl-30109322

ABSTRACT

To investigate the electronic behavior and magnetic properties of NbFeSb, we have performed 93Nb NMR, specific heat and magnetic measurements on NbFeSb samples heat treated at high temperatures. Magnetic measurements combined with an observed Schottky anomaly and changes in the NMR line width indicate the presence of a 0.2% concentrated native magnetic defect in stoichiometric NbFeSb samples. The origin of these native defects is believed to be due to Fe antisites on Nb sites. In addition, NMR shift and spin-lattice relaxation results below 200 K reveal a Korringa-like response indicating heavily-doped p-type behavior due to native defects. Above 280 K, this converts to an activated behavior, indicating the presence of an impurity band, empty at low temperatures, which is located around 0.03 eV above the valence band maximum.

SELECTION OF CITATIONS
SEARCH DETAIL
...