Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.394
Filter
1.
Medicine (Baltimore) ; 103(23): e38339, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38847666

ABSTRACT

In this study, we developed a method for determining cotinine and 3-hydroxycotinine in human serum and established a methodology for an in-depth study of tobacco exposure and health. After the proteins in the human serum samples were precipitated with acetonitrile, they were separated on a ZORBAX SB-Phenyl column with a mobile phase of methanol encompassing 0.3% formic acid-water encompassing 0.15% formic acid. The measurement was performed on an API5500 triple quadrupole mass spectrometer in the multiple reaction monitoring mode. Cotinine, 3-hydroxycotinine, and cotinine-d3 isotope internal standards were held for 2.56 minutes, 1.58 minutes, and 2.56 minutes, respectively. In serum, the linear range was 0.05 to 500 ng·mL-1 for cotinine and 0.50 to 1250 ng·mL-1 for 3-hydroxycotinine. The lower limit of quantification (LLOQ) was 0.05 ng·mL-1 and 0.5 ng·mL-1 for cotinine and 3-hydroxycotinine, respectively. The intra-day and inter-day relative standard deviations were <11%, and the relative errors were within ±â€…7%. Moreover, the mean extraction recoveries of cotinine and 3-hydroxycotinine were 98.54% and 100.24%, respectively. This method is suitable for the rapid determination of cotinine and 3-hydroxycotinine in human serum because of its rapidity, sensitivity, strong specificity, and high reproducibility. The detection of cotinine levels in human serum allows for the identification of the cutoff value, providing a basis for differentiation between smoking and nonsmoking populations.


Subject(s)
Cotinine , Tandem Mass Spectrometry , Humans , Cotinine/blood , Cotinine/analogs & derivatives , Tandem Mass Spectrometry/methods , Chromatography, Liquid/methods , Reproducibility of Results , Limit of Detection
2.
J Soc Psychol ; : 1-19, 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38852171

ABSTRACT

Familiar information is more likely to be accepted as true. This illusory truth effect has a tremendous negative impact on misinformation intervention. Previous studies focused on the familiarity from repeated exposure in the laboratory, ignoring preexisting familiarity with real-world misinformation. Over three studies (total N = 337), we investigated the cognitive mechanisms behind the truth biases from these two familiarity sources, and whether fact-checking can curb such biased truth perceptions. Studies 1 and 2 found robust truth effects induced by two sources of familiarity but with different cognitive processes. According to the cognitive process model, repetition-induced familiarity reduced decision prudence. Preexisting familiarity instead enhanced truth-congruent evidence accumulation. Study 3 showed that pre-exposing statements with warning flags eliminated the bias to truth induced by repetition but not that from preexisting familiarity. These repeated statements with warning labels also reduced decision caution. These findings furthered the understanding of how different sources of familiarity affect truth perceptions and undermine the intervention through different cognitive processes.

3.
J Phys Chem Lett ; 15(23): 6209-6215, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38838247

ABSTRACT

Palladium catalysts are frequently employed in processes where methanol is an energy vector or carrier, being useful for the synthesis of methanol from mixtures of carbon dioxide and hydrogen (CO2/H2) or its steam reforming on demand. Results of synchrotron-based ambient pressure X-ray photoelectron spectroscopy for the adsorption of methanol on a Pd(111) model catalyst show a rich surface chemistry and complex phenomena that strongly depend on pressure and temperature. At low pressures (<10-6 Torr) and temperatures (<300 K), CO is the dominant decomposition product. As the pressure increases, cleavage of C-H, O-H, and C-O bonds is observed, and at elevated temperatures (400-600 K) the formation of CO and CHx/C fragments compete on the surface. Thus, existing reaction networks for methanol decomposition must be modified. Furthermore, surface and subsurface hydrogen (coming from PdHx) play a significant role in the stability and removal of CHx and C species.

4.
Br J Clin Pharmacol ; 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831641

ABSTRACT

AIMS: Bruton's tyrosine kinase inhibitors (BTKIs), including first-generation ibrutinib, second-generation acalabrutinib and zanubrutinib, may be involved in the mechanisms of action related to adverse events (AEs) of the cardiovascular system. We aimed to characterize the cardiovascular AEs of BTKIs reported in the US Food and Drug Administration (FDA) Adverse Event Reporting System, and to compare the cardiovascular risks of BTKIs. METHODS: Across all indications of three FDA-approved BTKIs, primary suspect drugs were extracted over two periods: from January 2013 to December 2022 (after the approval of the first BTKI), and from January 2020 to December 2022 (all three BTKIs on the market). Disproportionality was measured by reporting odds ratios (RORs) and information components. Additional analyses were performed without incorporating patients with underlying cardiovascular disease (CVD). RESULTS: A total of 10 353 cases included the uses of ibrutinib, acalabrutinib and zanubrutinib. Ibrutinib was significantly associated with 47 cardiovascular AEs. Acalabrutinib was associated with new signals, including cardiac failure (ROR = 1.82 [1.13-2.93]), pulmonary oedema (ROR = 2.15 [1.19-3.88]), ventricular extrasystoles (ROR = 5.18 [2.15-12.44]), heart rate irregular (ROR = 3.05 [1.53-6.11]), angina pectoris (ROR = 3.18 [1.71-5.91]) and cardiotoxicity (ROR = 25.22 [17.14-37.10]). In addition, cardiovascular events had an earlier onset in acalabrutinib users. Zanubrutinib was only associated with atrial fibrillation. Acalabrutinib and zanubrutinib had lower ROR values than ibrutinib. The AE signals were generally consistent between the population receiving and not receiving CVD medications. CONCLUSIONS: Potential cardiovascular risks identified in this study were not clearly noted on the label of marketed acalabrutinib. Caution should be paid to the cardiovascular risks of BTKIs having been or being developed.

5.
J Colloid Interface Sci ; 672: 392-400, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38848623

ABSTRACT

The rational design and synthesis of carbon nanocages with highly complex porous structures are continuously facing challenges in the development of high-performance supercapacitors (SCs). The electrochemical performance characteristics of electrodes rely on their compositions and fabrication methods. Here, we propose a universal and efficient approach for the in-situ synthesis of zeolitic imidazolate framework-8 (ZIF-8) on porous carbonized wood, where the selective utilization of hexacarbonyl molybdenum protects the structural integrity of the ZIF-8 precursor, preventing collapse during thermal treatment. The subsequent pyrolysis process leads to the formation of small-sized molybdenum carbide (MoC) which are embedded in carbon nanocages (CN). The composite electrode consists of MoC/CN embedded in a porous carbonized wood (PCW), and it shows area-specific capacity of 9.7F cm-2 and 9.4 F cm-2 at 5 mA cm-2 and 30 mA cm-2, respectively. Subsequently, the symmetric supercapacitor, with two MoC/CN@PCW electrodes exhibits a areal specific capacitance of 2.7 F cm-2 at 5 mA cm-2. Moreover, this supercapacitor maintains an capacitance retention rate of 98.5 % after 12,000 discharge cycles. The supercapacitor exhibits a power density of 6.5 mW cm-2, resulting in an energy density of 0.864 mWh cm-2. Therefore, the utilization of wood-based electrodes holds promise for energy storage systems.

6.
Phytomedicine ; 131: 155790, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38851099

ABSTRACT

BACKGROUND: A balanced protein homeostasis network helps cholangiocarcinoma (CCA) maintain their oncogenic growth, and disrupting proteostasis therapeutically will induce proteotoxic stress. Phosphatase and tensin homolog (PTEN) have been reported to be involved in proteostasis, and PTEN-associated pathways are commonly altered in CCA. Celastrol, a triterpene from plants, exhibits cytotoxic effects in various types of cancer. However, the underlying mechanisms remain unclear. PURPOSE: We investigated the therapeutic effect of celastrol in CCA and identified the molecular characteristics of tumors that were sensitive to celastrol. The target of celastrol was explored. We then evaluated the candidate combination therapeutic strategy to increase the effectiveness of celastrol in celastrol-insensitive CCA tumors. METHODS: Various CCA cells were categorized as either celastrol-sensitive or celastrol-insensitive based on their response to celastrol. The molecular characteristics of cells from different groups were determined by RNA-seq. PTEN status and its role in proteasome activity in CCA cells were investigated. The CMAP analysis, molecular docking, and functional assay were performed to explore the effect of celastrol on proteasome activities. The correlation between PTEN status and clinical outcomes, as well as proteasomal activity, were measured in CCA patients. The synergistic therapeutic effect of autophagy inhibitors on celastrol-insensitive CCA cells were measured. RESULTS: Diverse responses to celastrol were observed in CCA cells. PTEN expression varied among different CCA cells, and its status could impact cell sensitivity to celastrol: PTENhigh tumor cells were resistant to celastrol, while PTENlow cells were more sensitive. Celastrol induced proteasomal dysregulation in CCA cells by directly targeting PSMB5. Cells with low PTEN status transcriptionally promoted proteasome subunit expression in an AKT-dependent manner, making these cells more reliant on proteasomal activities to maintain proteostasis. This caused the PTENlow CCA cells sensitive to celastrol. A negative correlation was found between PTEN levels and the proteasome signature in CCA patients. Moreover, celastrol treatment could induce autophagy in PTENhigh CCA cells. Disrupting the autophagic pathway in PTENhigh CCA cells enhanced the cytotoxic effect of celastrol. CONCLUSION: PTEN status in CCA cells determines their sensitivity to celastrol, and autophagy inhibitors could enhance the anti-tumor effect in PTENhigh CCA.

8.
Ren Fail ; 46(2): 2363591, 2024 Dec.
Article in English | MEDLINE | ID: mdl-38856314

ABSTRACT

Sepsis is a severe systemic infectious disease that often leads to multi-organ dysfunction. One of the common and serious complications of sepsis is renal injury. In this study, we aimed to investigate the potential mechanistic role of a novel compound called H-151 in septic kidney injury. We also examined its impact on renal function and mouse survival rates. Initially, we confirmed abnormal activation of the STING-TBK1 signaling pathway in the kidneys of septic mice. Subsequently, we treated the mice with H-151 and observed significant improvement in sepsis-induced renal dysfunction. This was evidenced by reductions in blood creatinine and urea nitrogen levels, as well as a marked decrease in inflammatory cytokine levels. Furthermore, H-151 substantially improved the seven-day survival rate of septic mice, indicating its therapeutic potential. Importantly, H-151 also exhibited an inhibitory effect on renal apoptosis levels, further highlighting its mechanism of protecting against septic kidney injury. These study findings not only offer new insights into the treatment of septic renal injury but also provide crucial clues for further investigations into the regulatory mechanisms of the STING-TBK1 signaling pathway and potential drug targets.


Subject(s)
Acute Kidney Injury , Disease Models, Animal , Lipopolysaccharides , Membrane Proteins , Protein Serine-Threonine Kinases , Sepsis , Signal Transduction , Animals , Acute Kidney Injury/metabolism , Acute Kidney Injury/prevention & control , Acute Kidney Injury/drug therapy , Mice , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/antagonists & inhibitors , Membrane Proteins/metabolism , Sepsis/complications , Sepsis/metabolism , Sepsis/drug therapy , Signal Transduction/drug effects , Male , Kidney/pathology , Kidney/metabolism , Kidney/drug effects , Apoptosis/drug effects , Mice, Inbred C57BL , Cytokines/metabolism
9.
Cell Mol Biol (Noisy-le-grand) ; 70(6): 66-72, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38836680

ABSTRACT

This study aimed to investigate the mechanism of the effect of TREM2 on cognitive function in autistic mice. TREM2 overexpression and knockdown viruses were given to autism spectrum disorder (ASD) mice and BV2 microglia cell line. To assess cognitive performance, all groups of mice took part in the open field, new object recognition, Morris water maze, and three-box social experiments. Double immunofluorescence labeling demonstrated co-localization of LC3II and NeuN. Proteins from the PI3K/Akt/mTOR pathway were identified. In vivo, behavior studies revealed that TREM2 could successfully improve ASD mice's social interaction and cognitive performance. Besides, we discovered that TREM2 could increase autophagy in ASD mice. In vitro, overexpressing TREM2 reduced the expression of PI3K/AKT/mTOR pathway proteins, whereas knocking down TREM2 increased the expression of PI3K/AKT/mTOR pathway proteins. In conclusion, TREM2 could inhibit PI3K/Akt/mTOR signaling pathway, enhance autophagy, and improve the social communication ability and cognitive function of ASD mice.


Subject(s)
Autophagy , Cognition , Membrane Glycoproteins , Microglia , Phosphatidylinositol 3-Kinases , Proto-Oncogene Proteins c-akt , Receptors, Immunologic , Signal Transduction , TOR Serine-Threonine Kinases , Animals , Cognition/physiology , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/genetics , Phosphatidylinositol 3-Kinases/metabolism , Receptors, Immunologic/metabolism , Receptors, Immunologic/genetics , TOR Serine-Threonine Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Mice , Microglia/metabolism , Male , Autistic Disorder/metabolism , Autistic Disorder/genetics , Autism Spectrum Disorder/metabolism , Autism Spectrum Disorder/genetics , Autism Spectrum Disorder/psychology , Disease Models, Animal , Behavior, Animal , Cell Line , Mice, Inbred C57BL , Social Behavior
10.
Int J Biol Macromol ; : 133074, 2024 Jun 10.
Article in English | MEDLINE | ID: mdl-38866293

ABSTRACT

Triple-negative breast cancer (TNBC) is the most malignant subtype of breast cancer, has a poor prognosis and limited access to efficient targeted treatments. Chronic unpredictable mild stress (CUMS) is highly risk factor for TNBC occurrence and development. Type X collagen (COL10A1), a crucial protein component of the extracellular matrix, ranks second among all aberrantly expressed genes in TNBC, and it is significantly up-regulated under CUMS. Nevertheless, the impact of CUMS and COL10A1 on TNBC, along with the underlying mechanisms are still unclear. In this research, we studied the effect of CUMS-induced norepinephrine (NE) elevation on TNBC, and uncovered that it notably enhanced TNBC cell proliferation, migration, and invasion in vitro, and also fostering tumor growth and lung metastasis in vivo. Additionally, our investigation found that COL10A1 directly interacted with integrin subunit beta 1 (ITGB1), then activates the downstream PI3K/AKT signaling pathway, thereby promoting TNBC growth and metastasis, while it was reversed by knocking down of COL10A1 or ITGB1. Our study demonstrated that the TNBC could respond to CUMS, and advocate for COL10A1 as a pivotal therapeutic target in TNBC treatment.

11.
Aesthetic Plast Surg ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38789811

ABSTRACT

BACKGROUND: Autologous adipose tissue is an ideal material for soft tissue filling and transplantation; however, high volumes of fat absorption over time lead to a relatively low overall survival percentage. The survival and differentiation of adipose-derived stem cells (ADSCs) in the transplanted microenvironment might improve adipose graft survival. Adipocytes have been reported to affect ADSC activation. However, its underlying mechanisms remain unclear. METHODS: Human ADSCs were incubated in a culture medium supplemented with hypoxic or normoxic conditioned culture medium (CM) derived from human adipocytes. Neuronal Pentraxin 1 (NPTX1) was overexpressed or knocked down in human adipocytes using an overexpression vector (NPTX1 OE) or small interfering RNA (siRNA) transfection, respectively. ADSC differentiation and paracrine secretion were assessed. Nude mice were implanted with human adipocytes and ADSCs. The adipose tissue was subsequently evaluated by histological analysis. RESULTS: CM from hypoxic-stimulated human adipocytes significantly facilitated the differentiation ability and paracrine levels of ADSCs. NPTX1 was significantly up-regulated in human adipocytes exposed to hypoxic conditions. In vitro, CM derived from hypoxia-stimulated human adipocytes or NPTX1-overexpressing human adipocytes exposed to normoxia promoted ADSC differentiation and paracrine; after silencing NPTX1, the facilitating effects of hypoxia-treated human adipocytes on ADSC activation were eliminated. Similarly, in vivo, the NPTX1 OE + normoxia-CM group saw improved histological morphology and fat integrity, less fibrosis and inflammation, and increased vessel numbers compared with the OE NC + normoxia-CM group; the adipocyte grafts of the si-NC + hypoxia-CM group yielded the most improved histological morphology, fat integrity, and the most vessel numbers. However, these enhancements of ADSC activation and adipose graft survival were partially abolished by NPTX1 knockdown in human adipocytes. CONCLUSION: NPTX1 might mediate the facilitating effects of hypoxia-stimulated human adipocytes on ADSC activation, thereby improving adipose tissue survival rate after autologous fat transplantation and the effectiveness of autologous fat transplantation through promoting ADSC activation. LEVEL OF EVIDENCE III: This journal requires that authors assign a level of evidence to each article. For a full description of these Evidence-Based Medicine ratings, please refer to the Table of Contents or the online Instructions to Authors www.springer.com/00266 .

12.
Org Lett ; 26(20): 4183-4188, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38742794

ABSTRACT

We present a novel approach for the skeletal rearrangement of an oxazole into an azepine and pyrrole through a dynamic electrocyclization process, showing an innovative, unconventional reaction sequence. This method enables precise control of regioselectivity in competitive 6π and 8π electrocyclization reactions, rendering the final products rich in functional groups that can be further developed for the synthesis of nitrogen-containing scaffolds. This is an unprecedented example of the selective synthesis of seven- and five-member heterocycles via dynamic electrocyclization ring opening or closure.

13.
J Affect Disord ; 358: 270-282, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38723681

ABSTRACT

OBJECTIVE: Ganoderic Acid A (GAA), a primary bioactive component in Ganoderma, has demonstrated ameliorative effects on depressive-like behaviors in a Chronic Social Defeat Stress (CSDS) mouse model. This study aims to elucidate the underlying molecular mechanisms through proteomic analysis. METHODS: C57BL/6 J mice were allocated into control (CON), chronic social defeat stress (CSDS), GAA, and imipramine (IMI) groups. Post-depression induction via CSDS, the GAA and IMI groups received respective treatments of GAA (2.5 mg/kg) and imipramine (10 mg/kg) for five days. Behavioral assessments utilized standardized tests. Proteins from the prefrontal cortex were analyzed using LC-MS, with further examination via bioinformatics and PRM for differential expression. Western blot analysis confirmed protein expression levels. RESULTS: Chronic social defeat stress (CSDS) induced depressive-like behaviors in mice, which were significantly alleviated by GAA treatment, comparably to imipramine (IMI). Proteomic analysis identified distinct proteins in control (305), GAA-treated (949), and IMI-treated (289) groups. Enrichment in mitochondrial and synaptic proteins was evident from GO and PPI analyses. PRM analysis revealed significant expression changes in proteins crucial for mitochondrial and synaptic functions (namely, Naa30, Bnip1, Tubgcp4, Atxn3, Carmil1, Nup37, Apoh, Mrpl42, Tprkb, Acbd5, Dcx, Erbb4, Ppp1r2, Fam3c, Rnf112, and Cep41). Western blot validation in the prefrontal cortex showed increased levels of Mrpl42, Dcx, Fam3c, Ppp1r2, Rnf112, and Naa30 following GAA treatment. CONCLUSION: GAA exhibits potential antidepressant properties, with its action potentially tied to the modulation of synaptic functions and mitochondrial activities.


Subject(s)
Behavior, Animal , Depression , Disease Models, Animal , Lanosterol , Mice, Inbred C57BL , Prefrontal Cortex , Proteomics , Social Defeat , Stress, Psychological , Animals , Mice , Stress, Psychological/drug therapy , Stress, Psychological/metabolism , Depression/drug therapy , Depression/metabolism , Male , Prefrontal Cortex/metabolism , Prefrontal Cortex/drug effects , Behavior, Animal/drug effects , Lanosterol/analogs & derivatives , Lanosterol/pharmacology , Antidepressive Agents/pharmacology , Antidepressive Agents/therapeutic use , Imipramine/pharmacology , Doublecortin Protein , Heptanoic Acids
14.
J Am Chem Soc ; 146(21): 14422-14426, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38709624

ABSTRACT

Here we report a concise and divergent synthesis of scabrolide A and havellockate, representative members of polycyclic marine natural product furano(nor)cembranoids. The synthesis features a highly efficient exo-exo-endo radical cascade. Through the generation of two rings, three C-C bonds, and three contiguous stereocenters in one step, this remarkable transformation not only assembles the bowl-shaped, common 6-5-5 fused ring system from simple building blocks but also precisely installs the functionalities at desired positions and sets the stage for further divergent preparation of both target molecules. Further studies reveal that the robust and unusual 6-endo radical addition in the cascade is likely facilitated by the rigidity of the substrate.

15.
Mol Pharm ; 2024 May 31.
Article in English | MEDLINE | ID: mdl-38819959

ABSTRACT

Inflammation induced by activated macrophages within vulnerable atherosclerotic plaques (VAPs) constitutes a significant risk factor for plaque rupture. Translocator protein (TSPO) is highly expressed in activated macrophages. This study investigated the effectiveness of TSPO radiotracers, 18F-FDPA, in detecting VAPs and quantifying plaque inflammation in rabbits. 18 New Zealand rabbits were divided into 3 groups: sham group A, VAP model group B, and evolocumab treatment group C. 18F-FDPA PET/CTA imaging was performed at 12, 16, and 24 weeks in all groups. Optical coherence tomography (OCT) was performed on the abdominal aorta at 24 weeks. The VAP was defined through OCT images, and ex vivo aorta PET imaging was also performed at 24 weeks. The SUVmax and SUVmean of 18F-FDPA were measured on the target organ, and the target-to-background ratio (TBRmax) was calculated as SUVmax/SUVblood pool. The arterial sections of the isolated abdominal aorta were analyzed by HE staining, CD68 and TSPO immunofluorescence staining, and TSPO Western blot. The results showed that at 24 weeks, the plaque TBRmax of 18F-FDPA in group B was significantly higher than in groups A and C. Immunofluorescence staining of CD68 and TSPO, as well as Western blot, confirmed the increased expression of macrophages and TSPO in the corresponding regions of group B. HE staining revealed an increased presence of the lipid core, multiple foam cells, and inflammatory cell infiltration in the area with high 18F-FDPA uptake. This indicates a correlation between 18F-FDPA uptake, inflammation severity, and VAPs. The TSPO-targeted tracer 18F-FDPA shows specific uptake in macrophage-rich regions of atherosclerotic plaques, making it a valuable tool for assessing inflammation in VAPs.

16.
Anal Chim Acta ; 1308: 342649, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38740457

ABSTRACT

BACKGROUND: Clustered regularly interspaced short palindromic repeats (CRISPR)/Cas12a-powered biosensor with a G-quadruplex (G4) reporter offer the benefits of simplicity and sensitivity, making them extensively utilized in detection applications. However, these biosensors used for monitoring pollutants in environmental water samples may face the problem of high background signal and easy interference due to the "signal-off" output. It is obvious that a biosensor based on the CRISPR/Cas12a system and G4 with a "signal on" output mode needs to be designed for detecting environmental pollutants. RESULTS: By using phosphorothioate-modified G4 as a reporter and catalytic hairpin assembly (CHA) integrated with Cas12a as an amplification strategy, a "signal-on" colorimetric/photothermal biosensor (psG4-CHA/Cas) for portable detection of environmental pollutants was developed. With the help of functional nucleotides, the target pollutant (kanamycin or Pb2+) triggers a CHA reaction to produce numerous double-strand DNA, which can activate Cas12a's trans-cleavage activity. The active Cas12a cleaves locked DNA to release caged psG-rich sequences. Upon binding hemin, the psG-rich sequence forms a psG4/hemin complex, facilitating the oxidation of the colorless 3,3',5,5'-tetramethylbenzidine (TMB) into the blue photothermal agent (oxTMB). The smartphone was employed for portable colorimetric detection of kanamycin and Pb2+. The detection limits were found to be 100 pM for kanamycin and 50 pM for Pb2+. Detection of kanamycin and Pb2+ was also carried out using a portable thermometer with a detection limit of 10 pM for kanamycin and 8 pM for Pb2+. SIGNIFICANCE: Sensitive, selective, simple and robust detection of kanamycin and Pb2+ in environmental water samples is achieved with the psG4-CHA/Cas system. This system not only provides a new perspective on the development of efficient CRISPR/Cas12a-based "signal-on" designs, but also has a promising application for safeguarding human health and environmental monitoring.


Subject(s)
Biosensing Techniques , CRISPR-Cas Systems , G-Quadruplexes , Biosensing Techniques/methods , CRISPR-Cas Systems/genetics , Colorimetry , Lead/analysis , Environmental Pollutants/analysis , Limit of Detection , CRISPR-Associated Proteins/chemistry , CRISPR-Associated Proteins/genetics , Water Pollutants, Chemical/analysis , Bacterial Proteins , Endodeoxyribonucleases
17.
Nurs Inq ; : e12645, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812242

ABSTRACT

This paper explores the ways in which health care professionals, family carers, and older persons expressed attitudes and opinions on using Paro, a social robot designed to stimulate patients with dementia. Thereafter, we critically evaluate existing prejudicial views toward Paro users to provide recommendations for its future use. Using an exploratory qualitative interview method, we recruited a total of 67 participants in Switzerland. They included 23 care professionals, 17 family carers, and 27 older persons. Data obtained were analyzed thematically. Study findings present general agreement that Paro is an appealing and beneficial social robot, but it is not a tool that everyone feels comfortable with. Because it is perceived as "child play," it would be demeaning for competent adults to play with such things. Consequently, Paro is appropriate only for persons with dementia. These findings brought forth ethical concerns about deception, infantilization, and respecting older persons' dignity. The idea of who is an appropriate Paro user led to our discussions on predicting future Paro users. The meaning of using social robotics in nursing homes can be conditioned by a rigid interpretation of adulthood and playful behavior. To protect future selves when one is living with dementia from prejudices, it may be useful for older persons and their loved ones to plan their future care situations to ensure that they are treated in accordance with their delineated decisions.

18.
Article in English | MEDLINE | ID: mdl-38816990

ABSTRACT

OBJECTIVE: Metabolic dysfunction-associated steatotic liver disease (MASLD) is becoming an escalating health problem in pediatric populations. This study aimed to investigate the role of N-acetyltransferase 10 (NAT10) in maternal high-fat diet (HFD)-induced MASLD in offspring at early life. METHODS: We generated male hepatocyte-specific NAT10 knockout (Nat10HKO) mice and mated them with female Nat10fl/fl mice under chow or HFD feeding. Body weight, liver histopathology, and expression of lipid metabolism-associated genes (Srebp1c, Fasn, Pparα, Cd36, Fatp2, Mttp, and Apob) were assessed in male offspring at weaning. Lipid uptake assays were performed both in vivo and in vitro. The mRNA stability assessment and RNA immunoprecipitation were performed to determine NAT10-regulated target genes. RESULTS: NAT10 deletion in hepatocytes of male offspring alleviated perinatal lipid accumulation induced by maternal HFD, decreasing expression levels of Srebp1c, Fasn, Cd36, Fatp2, Mttp, and Apob while enhancing Pparα expression. Furthermore, Nat10HKO male mice exhibited reduced lipid uptake. In vitro, NAT10 promoted lipid uptake by enhancing the mRNA stability of CD36 and FATP2. RNA immunoprecipitation assays exhibited direct interactions between NAT10 and CD36/FATP2 mRNA. CONCLUSIONS: NAT10 deletion in offspring hepatocytes ameliorates maternal HFD-induced hepatic steatosis through decreasing mRNA stability of CD36 and FATP2, highlighting NAT10 as a potential therapeutic target for pediatric MASLD.

19.
Comput Biol Med ; 177: 108674, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815486

ABSTRACT

Accurate segmentation of pulmonary nodule is essential for subsequent pathological analysis and diagnosis. However, current U-Net architectures often rely on a simple skip connection scheme, leading to the fusion of feature maps with different semantic information, which can have a negative impact on the segmentation model. In response to this challenge, this study introduces a novel U-shaped model specifically designed for pulmonary nodule segmentation. The proposed model incorporates features such as the U-Net backbone, semantic aggregation feature pyramid module, and reverse attention module. The semantic aggregation module combines semantic information with multi-scale features, addressing the semantic gap between the encoder and decoder. The reverse attention module explores missing object parts and captures intricate details by erasing the currently predicted salient regions from side-output features. The proposed model is evaluated using the LIDC-IDRI dataset. Experimental results reveal that the proposed method achieves a dice similarity coefficient of 89.11%and a sensitivity of 90.73 %, outperforming state-of-the-art approaches comprehensively.


Subject(s)
Semantics , Solitary Pulmonary Nodule , Humans , Solitary Pulmonary Nodule/diagnostic imaging , Lung Neoplasms/diagnostic imaging , Neural Networks, Computer , Tomography, X-Ray Computed/methods , Algorithms , Databases, Factual
20.
Ecol Evol ; 14(5): e11323, 2024 May.
Article in English | MEDLINE | ID: mdl-38694750

ABSTRACT

Meconopsis biluoensis, a new species of Papaveraceae in an alpine meadow from Yunnan, Southwest China, is described and illustrated. Morphologically, it resembles Meconopsis georgei, while it is distinct in acaulescent and hispid with clearly expanded bases on the leaves. A genus-level molecular phylogenetic analysis supported the closest relationship between M. biluoensis and M. georgei. In a finer population-level molecular phylogenetic analysis using ribosomal DNA (rDNA) and the chloroplast genome, individuals from M. biluoensis and M. georgei were clearly separated, and the extremely short branch length indicated that the two species had a very short differentiation time. The species has currently been assessed as "endangered" (EN) due to its small-sized population and narrow distribution following the IUCN categories and criteria.

SELECTION OF CITATIONS
SEARCH DETAIL
...