Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Huan Jing Ke Xue ; 43(3): 1630-1640, 2022 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-35258227

ABSTRACT

Cerium-manganese modified biochar (MBC) combined with earthworms (Eisenia foetida) can immobilize arsenic (As) in red soils. In this study, high-throughput sequencing technology was used to explore the combined effects of MBC and E. foetida on bacterial diversity and community structure in As-contaminated red soils. The results showed that the single earthworm treatment had the highest diversity index, whereas the diversity index decreased in the single biochar or MBC treatment, indicating that earthworms can boost the growth of bacteria in the soil, and the addition of biochar/MBC all decreased the bacterial diversity of soils. When biochar/MBC was combined with earthworms, the diversity index increased to some degree. In terms of bacterial community structure, the relative abundance of Proteobacteria and Bacteroidetes increased significantly in each treatment, especially for MBC-earthworm treated soil, in which the relative abundance was increased by 17.08% and 329.47% for Proteobacteria and Bacteroidetes, respectively, compared to that in the control (CK). Otherwise, those abundances were decreased by 19.18% and 48.76%, respectively, for Acidobacteria and Chloroflexi. Correlation analysis results showed that the soil water-soluble As (WSAs) was negatively correlated with the relative abundances of Proteobacteria and Bacteroides (P<0.05) but was positively correlated with Acidobacteria and Chloroflexi (P<0.05), which indicated that with the decrease in WSAs in soils, the bacteria of Proteobacteria and Bacteroides reproduced rapidly, whereas the Acidobacteria and Chloroflexi were inhibited. Moreover, different treatments induced selective changes in the bacterial community, in which earthworms significantly promoted the proliferation of γ-Proteobacteria, Flavobacteriales, Aeromonadales, and Variovorax and earthworms improved the immobilization effect of As by promoting the growth of these bacteria.


Subject(s)
Arsenic , Oligochaeta , Soil Pollutants , Animals , Arsenic/pharmacology , Bacteria , Charcoal/pharmacology , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis
2.
Ying Yong Sheng Tai Xue Bao ; 25(8): 2341-8, 2014 Aug.
Article in Chinese | MEDLINE | ID: mdl-25509087

ABSTRACT

Soil aggregate stability and microbial diversity play important roles in nutrient recycling in soil-crop systems. This study investigated the impacts of different soil tillage systems on soil aggregation and soil microbial diversity based on a 15-year long-term experiment on loess soil in Henan Province of China. Treatments included reduced tillage (RT), no-tillage (NT), sub-soiling with mulch (SM), wheat-peanut two crops (TC), and conventional tillage (CT). Soil aggregates were separated by wet sieving method, and soil microbial (bacterial, archaeal and fungal) diversity was examined by using the techniques of denaturing gradient gel electrophoresis (PCR-DGGE) analysis. The results showed that water-stable macroaggregates concent (R0.25) and the mean mass diameter (MWD) in the surface soil significantly increased under NT, SM and TC, R0.25 increased by 21.5%, 29.5% and 69.2%, and MWD increased by 18.0%, 12.2% and 50.4%, respectively, as compared with CT. Tillage practices caused changes in bacterial, archaeal and fungal community compositions. With NT, SM and TC, the bacterial, archaeal and fungal Shannon indices increased by 0.3%, 0.3%, and 0.6%, and 20.2%, 40.5%, and 49.1%, and 23.7%, 19.5%, and 25.8%, respectively, as compared with CT. Both bacterial and archaeal Shannon indices were significantly correlated with the indices of R0.25 and MWD, while the fungal Shannon index was not significantly correlated with these two indices. In conclusion, conservation tillage, including NT and SM, and crop rotation, including TC, improved soil aggregation and soil microbial diversity.


Subject(s)
Agriculture/methods , Soil Microbiology , Soil , Arachis , Archaea , Bacteria , China , Crops, Agricultural , Fungi , Triticum , Water
SELECTION OF CITATIONS
SEARCH DETAIL
...