Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Hortic Res ; 11(5): uhae063, 2024 May.
Article in English | MEDLINE | ID: mdl-38720933

ABSTRACT

Broccoli (Brassica oleracea var. italica Plenck) is an important vegetable crop, as it is rich in health-beneficial glucosinolates (GSLs). However, the genetic basis of the GSL diversity in Brassicaceae remains unclear. Here we report a chromosome-level genome assembly of broccoli generated using PacBio HiFi reads and Hi-C technology. The final genome assembly is 613.79 Mb in size, with a contig N50 of 14.70 Mb. The GSL profile and content analysis of different B. oleracea varieties, combined with a phylogenetic tree analysis, sequence alignment, and the construction of a 3D model of the methylthioalkylmalate synthase 1 (MAM1) protein, revealed that the gene copy number and amino acid sequence variation both contributed to the diversity of GSL biosynthesis in B. oleracea. The overexpression of BoMAM1 (BolI0108790) in broccoli resulted in high accumulation and a high ratio of C4-GSLs, demonstrating that BoMAM1 is the key enzyme in C4-GSL biosynthesis. These results provide valuable insights for future genetic studies and nutritive component applications of Brassica crops.

2.
Materials (Basel) ; 17(9)2024 May 06.
Article in English | MEDLINE | ID: mdl-38730973

ABSTRACT

This study analyzes the pigments and binders used in the painted wooden structure of DaZhong Gate in the Confucius Temple in Qufu, Shandong Province, China. Five samples were collected from the building and analyzed using techniques such as polarized light microscopy (PLM), energy-dispersive X-ray spectroscopy (EDX), micro-Raman spectroscopy (m-RS), and Fourier-transform infrared spectroscopy (FT-IR). The findings reveal that the red, yellow, green, and blue pigments are identified as lead red, lead chromate yellow, emerald green, and ultramarine, respectively. The white pigment is determined to be a combination of chalk and lead white or anglesite. Considering the production period of the yellow and green pigments, it is inferred that architectural paintings underwent restoration or repainting during the late Qing Dynasty. The analysis of the binder in the pigment using pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS) reveals that the binder employed is a protein-based glue. Additionally, the detected presence of Heat-bodied tung oil suggests a potential connection to traditional Chinese painting techniques on wooden surfaces. This discovery not only contributes to the historical research of the Confucius Temple but also provides crucial data for the conservation and restoration efforts of this culturally significant heritage site.

3.
Plants (Basel) ; 13(6)2024 Mar 20.
Article in English | MEDLINE | ID: mdl-38592915

ABSTRACT

Basella alba is a frequently consumed leafy vegetable. However, research on its nutritional components is limited. This study aimed to explore the variation in the nutritional components and antioxidant capacity of different cultivars and organs of Basella alba. Here, we primarily chose classical spectrophotometry and high-performance liquid chromatography (HPLC) to characterize the variation in nutritional components and antioxidant capacity among different organs (inflorescences, green fruits, black fruits, leaves, and stems) of eight typical cultivars of Basella alba. The determination indices (and methods) included the total soluble sugar (anthrone colorimetry), total soluble protein (the Bradford method), total chlorophyll (the ethanol-extracting method), total carotenoids (the ethanol-extracting method), total ascorbic acid (the HPLC method), total proanthocyanidins (the p-dimethylaminocinnamaldehyde method), total flavonoids (AlCl3 colorimetry), total phenolics (the Folin method), and antioxidant capacity (the FRAP and ABTS methods). The results indicated that M5 and M6 exhibited advantages in their nutrient contents and antioxidant capacities. Additionally, the inflorescences demonstrated the highest total ascorbic acid and total phenolic contents, while the green and black fruits exhibited relatively high levels of total proanthocyanidins and antioxidant capacity. In a comparison between the green and black fruits, the green fruits showed higher levels of total chlorophyll (0.77-1.85 mg g-1 DW), total proanthocyanidins (0.62-2.34 mg g-1 DW), total phenolics (15.28-27.35 mg g-1 DW), and ABTS (43.39-59.16%), while the black fruits exhibited higher levels of total soluble protein (65.45-89.48 mg g-1 DW) and total soluble sugar (56.40-207.62 mg g-1 DW) in most cultivars. Chlorophyll, carotenoids, and flavonoids were predominantly found in the leaves of most cultivars, whereas the total soluble sugar contents were highest in the stems of most cultivars. Overall, our findings underscore the significant influence of the cultivars on the nutritional composition of Basella alba. Moreover, we observed notable variations in the nutrient contents among the different organs of the eight cultivars, and proanthocyanidins may contribute significantly to the antioxidant activity of the fruits. On the whole, this study provides a theoretical basis for the genetic breeding of Basella alba and dietary nutrition and serves as a reference for the comprehensive utilization of this vegetable.

4.
Materials (Basel) ; 16(19)2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37834541

ABSTRACT

Situated in the village of Lama Temple on the eastern bank of the Wulie River in Chengde, Puren Temple stands as one of the few remaining royal temples of great importance from the Kangxi era (1662-1722 AD). This ancient edifice has greatly contributed to the advancement of our comprehension regarding the art of royal temple painting. The present study undertakes a comprehensive analysis and identification of nine samples obtained from the beams and ceiling paintings within the main hall of Puren Temple. Furthermore, a systematic examination of their mineral pigments and adhesives is conducted. The findings from polarized light microscopy (PLM), energy-type X-ray fluorescence spectrometer (ED-XRF), micro-Raman spectroscopy (m-RS), and X-ray diffractometer (XRD) analyses reveal that the pigments present in the main hall beams of Puren Temple are cinnabar, lead white, lapis lazuli, and lime green, while the pigments in the ceiling paintings consist of cinnabar, staghorn, lead white, lapis lazuli, and lime green. The use of animal glue as a binder for these pigments on both the main hall beams and ceiling paintings is confirmed via pyrolysis-gas chromatography-mass spectrometry (Py-Gc/Ms) results. These findings hold significant implications for the future restoration of Puren Temple, as they provide valuable guidance for the selection of appropriate restoration materials.

5.
Water Res ; 209: 117940, 2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34923442

ABSTRACT

The extractive membrane bioreactor (EMBR) combines an extractive membrane process and bioreactor to treat highly saline recalcitrant organic wastewater, in which the organic contaminations diffuse through a semi-permeable polydimethysiloxane (PDMS) composite membrane from the feed wastewater to the receiving biomedium. During the long-term EMBR operation, membrane biofouling is an inevitable phenomenon, which is one of the main obstacles impeding its wide applications. The excessive biofilm deposited on membrane surface could significantly reduce the organic mass transfer coefficient of composite membranes by more than 40%. Therefore, in this work, the silver (Ag)-metal organic frameworks (MOFs) were synthesized and immobilized on the PDMS surface of nanofibrous composite membranes to mitigate the membrane biofouling. The robustness of Ag-MOFs coating on membrane surface was well demonstrated by ultrasonic treatment. In addition, the silver nanoparticles (AgNPs) were coated on the PDMS surface of composite membranes for comparison. In contrast with the unmodified composite membrane #M0, the AgNPs-coated (#M1) and Ag-MOFs modified (#M2) composite membranes possessed less hydrophobic and negatively charged surfaces due to the coating layers. Although the modified membranes exhibited lower phenol mass transfer coefficients (k0's) in the aqueous-aqueous extractive membrane process due to these additional modification layers, both #M1 and #M2 displayed better long-term performance in the 12-days continuous EMBR operations due to their excellent anti-biofouling properties. Moreover, #M2 exhibited the most stable EMBR performance among the composite membranes developed in this work and other reported membranes with a finally stabilized k0 of 33.0 × 10-7 m/s (89% of initial k0). The least amounts of proteins, polysaccharides and total suspended solids (TSS) on the surface of tested #M2 also demonstrated its outstanding biofouling resistance. This excellent anti-biofouling performance should be attributed to the stable, controlled and long-lasting Ag+release from Ag-MOFs, as well as its less hydrophobic and negative charged surface properties, which made #M2 undergo the k0's increasing and gradual stabilization stages in the long-term EMBR operations.

6.
Environ Sci Technol ; 54(12): 7611-7618, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32396342

ABSTRACT

The aqueous-aqueous membrane extractive process is an ideal approach to remove recalcitrant organics from highly saline and harsh wastewater. However, it is still challenging to develop highly efficient membranes for the extractive process. In this work, three-tiered polydimethylsiloxane (PDMS)/polyvinylidene fluoride (PVDF) nanofiber/nonwoven fabric composite membranes were prepared by electrospinning and electrospray printing for the first time. An ultrathin and defect-free PDMS selective layer was fabricated on the surface of a PVDF/nonwoven fabric nanofibrous substrate by electrospray printing. Meanwhile, the thicknesses of the PDMS selective layer were able to be finely controlled by electrospray printing. The novel three-tiered composite membrane #N3-1 with the thinnest PDMS layer (3.0 ± 0.4 µm) and a thin and porous supporting layer showed an exceptionally high k0 of 37.9 ± 2.8 × 10-7 m/s and an excellent salt rejection above 99.95% over a 105 h continuous operation. Moreover, #N3-1 exhibited outstanding k0 at feed pH of 2 and 11 over 100 h without loss of salt rejection. In addition, the effects of the nonwoven fabric supporting layer on the phenol mass transfer coefficient (k0, m/s) of resultant extractive membranes were also studied symmetrically. A thin and porous nonwoven supporting layer #N3 was capable of improving the k0 of resultant composite membrane significantly.


Subject(s)
Nanofibers , Phenol , Membranes, Artificial , Porosity , Wastewater
7.
R Soc Open Sci ; 6(2): 182054, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30891304

ABSTRACT

The composition and content of glucosinolates were investigated in the edible parts (petioles, peel and flesh) of tuber mustard, bamboo shoots mustard and baby mustard by high-performance liquid chromatography to reveal the association between the different cooking methods and their glucosinolate profiles. Eight glucosinolates were identified from tuber mustard and baby mustard, including three aliphatic glucosinolates, four indole glucosinolates and one aromatic glucosinolate. Only six of the eight glucosinolates were detected in bamboo shoots mustard. The results show that the distribution and content of glucosinolates varied widely among the different tissues and species. The highest contents of glucosinolates in tuber mustard, bamboo shoots mustard and baby mustard were found in flesh, petioles and peel, respectively. The content of total glucosinolates ranged from 5.21 µmol g-1 dry weight in bamboo shoots mustard flesh to 25.64 µmol g-1 dry weight in baby mustard peel. Aliphatic glucosinolates were predominant in the three stem mustards, followed by indole and aromatic glucosinolates. Sinigrin was the predominant glucosinolate in the three stem mustards. Sinigrin content in tuber mustard was slightly higher than that in baby mustard and much higher than that in bamboo shoots mustard, suggesting that the pungent-tasting stem mustards contained more sinigrin. In addition, a principal components analysis showed that bamboo shoots mustard was distinguishable from the other two stem mustards. A variance analysis indicated that the glucosinolates were primarily influenced by a species × tissue interaction. The correlations among glucosinolates were also analysed.

8.
Biomolecules ; 8(4)2018 10 15.
Article in English | MEDLINE | ID: mdl-30326637

ABSTRACT

To increase the understanding of alkaloid biosynthesis in Nicotiana tabacum during whole plant growth periods, variations of the contents of alkaloids and the transcription of key biosynthetic genes in fresh leaves were investigated in three varieties at five developmental stages. Six alkaloids were analyzed by gas chromatograph⁻mass spectrometry (GC⁻MS) and the most abundant alkaloid was observed during the upper leaves maturing stage in the varieties, among which the alkaloid content of K326 was the highest. Considering the genetic effect, variance analysis indicated that the developmental stage played a predominant role in alkaloid accumulation. Moreover, the levels of biosynthetic gene transcripts in the leaves at the vigorous growing stage might contribute to the contents of alkaloids in the leaves during the maturing stages. To further illuminate the metabolism of alkaloid biosynthesis, a correlation among alkaloids was also documented.


Subject(s)
Alkaloids/genetics , Nicotiana/genetics , Transcription, Genetic , Alkaloids/chemistry , Alkaloids/isolation & purification , Gas Chromatography-Mass Spectrometry , Gene Expression Regulation, Plant , Plant Leaves/chemistry , Plant Leaves/genetics , Plant Leaves/growth & development , Nicotiana/chemistry , Nicotiana/growth & development
9.
RSC Adv ; 8(59): 33845-33854, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-35548826

ABSTRACT

Despite being a brassicaceous vegetable that is widely consumed in winter and spring in Southwest China, there is lack of information available on baby mustard. The aim of this study was to determine the contents of soluble proteins, soluble sugars, chlorophylls, carotenoids, ascorbic acid, proanthocyanidins, flavonoids, total phenolics, and glucosinolates, as well as the antioxidant activity of the whole edible parts and seven individual edible parts (swollen stem: petioles, peel, flesh; lateral bud: leaves, petioles, peel, flesh) of baby mustard. The results showed that significant differences in health-promoting compounds and antioxidant activity existed between the different edible parts. The lateral bud of baby mustard possessed greater health-promoting compounds than the swollen stem. In particular, the lateral bud leaves possessed abundant antioxidant compounds and antioxidant activity, indicating that these should be conserved during harvesting due to their potential contribution to human health. Furthermore, aliphatic glucosinolates were predominant, and sinigrin was the most abundant glucosinolate in all the assessed parts of baby mustard, the content of which was 15.81 µmol g-1 dry weight, accounting for more than 87% of the total glucosinolate content. However, the sinigrin content in baby mustard is lower than tuber mustard, which explains the less pungent flavor of baby mustard and its better suitability as a fresh vegetable. In addition, antioxidant activity was highly correlated with total phenolics, whereas gluconasturtiin and soluble sugars were negatively correlated with the majority of antioxidants.

SELECTION OF CITATIONS
SEARCH DETAIL
...