Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 819
Filter
1.
World J Clin Cases ; 12(18): 3567-3574, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38983412

ABSTRACT

BACKGROUND: Superior mesenteric artery (SMA) injuries rarely occur during blunt abdominal injuries, with an incidence of < 1%. The clinical manifestations mainly include abdominal hemorrhage and peritoneal irritation, which progress rapidly and are easily misdiagnosed. Quick and accurate diagnosis and timely effective treatment are greatly significant in managing emergent cases. This report describes emergency rescue by a multidisciplinary team of a patient with hemorrhagic shock caused by SMA rupture. CASE SUMMARY: A 55-year-old man with hemorrhagic shock presented with SMA rupture. On admission, he showed extremely unstable vital signs and was unconscious with a laceration on his head, heart rate of 143 beats/min, shallow and fast breathing (frequency > 35 beats/min), and blood pressure as low as 20/10 mmHg (1 mmHg = 0.133 kPa). Computed tomography revealed abdominal and pelvic hematocele effusion, suggesting active bleeding. The patient was suspected of partial rupture of the distal SMA branch. The patient underwent emergency mesenteric artery ligation, scalp suture, and liver laceration closure. In view of conditions with acute onset, rapid progression, and high bleeding volume, key points of nursing were conducted, including activating emergency protocol, opening of the green channel, and arranging relevant examinations with various medical staff for quick diagnosis. The seamless collaboration of the multidisciplinary team helped shorten the preoperative preparation time. Emergency laparotomy exploration and mesenteric artery ligation were performed to mitigate hemorrhagic shock while establishing efficient venous accesses and closely monitoring the patient's condition to ensure hemodynamic stability. Strict measures were taken to avoid intraoperative hypothermia and infection. CONCLUSION: After 3.5 h of emergency rescue and medical care, bleeding was successfully controlled, and the patient's condition was stabilized. Subsequently, the patient was transferred to the intensive care unit for continuous monitoring and treatment. On the sixth day, the patient was weaned off the ventilator, extubated, and relocated to a specialized ward. Through diligent medical intervention and attentive nursing, the patient made a full recovery and was discharged on day 22. The follow-up visit confirmed the patient's successful recovery.

2.
Carbohydr Polym ; 339: 122250, 2024 Sep 01.
Article in English | MEDLINE | ID: mdl-38823917

ABSTRACT

Glycyrrhizae Radix et rhizome/licorice is a precious herb in traditional Chinese medicine (TCM). TCM's polysaccharides are medicinally active. But herbal polysaccharides pose some limitations for topical applications. Therefore, this study aimed to utilize licorice polysaccharide via mesoporous silica nanoparticles (MSN) for anti-acne efficacy in topical delivery. The polysaccharide (GGP) was extracted with a 10 % NaOH solution. Chemical characterization suggested that GGP possesses an Mw of 267.9 kDa, comprised primarily of Glc (54.1 %) and Ara (19.12 %), and probably 1,4-linked Glc as a backbone. Then, MSN and amino-functionalized MSN were synthesized, GGP entrapped, and coated with polydopamine (PDA) to produce nanoparticle cargo. The resulted product exhibited 76 % entrapment efficiency and an in vitro release of 89 % at pH 5, which is usually an acne-prone skin's pH. Moreover, it significantly increased Sebocytes' cellular uptake. GGP effectively acted as an anti-acne agent and preserved its efficacy in synthesized nanoparticles. In vivo, the results showed that a 20 % gel of MSN-NH2-GGP@PDA could mediate an inflammatory response via inhibiting pro-inflammatory cytokines and regulating anti-inflammatory cytokines. The MSN-NH2-GGP@PDA inhibited TLR2-activated-MAPK and NF-κB pathway triggered by heat-killed P. acnes. In conclusion, fabricated MSN entrapped GGP for biomimetic anti-acne efficacy in topical application.


Subject(s)
Acne Vulgaris , Glycyrrhiza , Nanoparticles , Polysaccharides , Silicon Dioxide , Glycyrrhiza/chemistry , Silicon Dioxide/chemistry , Polysaccharides/chemistry , Polysaccharides/pharmacology , Nanoparticles/chemistry , Animals , Porosity , Acne Vulgaris/drug therapy , Mice , Administration, Topical , Humans , Drug Carriers/chemistry , Drug Liberation , Indoles , Polymers
3.
Int Ophthalmol ; 44(1): 294, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38943020

ABSTRACT

PURPOSE: To investigate the clinical significance of the correlation between optical densitometry and both biomechanical and morphological parameters in keratoconus (KC) and to verify the diagnostic value of optical densitometry in KC. METHOD: This cross-sectional study included 436 eyes of 295 patients with KC. Corneal optical densitometry, morphological parameters and biomechanical parameters were measured. Spearman's correlation analysis was employed to investigate the association between optical densitometry and both biomechanical and morphological parameters. RESULT: Optical densitometry of the anterior (0-2 mm and 2-6 mm), central (0-2 mm), posterior (2-6 mm) and total (2-6 mm) layers correlated positively with SPA1, while the posterior layer (0-2 mm) correlated negatively. Optical densitometry of the anterior layers 2-6 mm, 6-10 mm, and the central layer 6-10 mm negatively affected AL1, while the posterior layer 0-2 mm positively affected it. Optical densitometry of the anterior, central, and posterior layers 0-2 mm and 2-6 mm positively influenced the morphological parameters K1F, K2F, KmF and the absolute values of K1B, K2B, KmB. Optical densitometry of the center (0-2 mm) and posterior (2-6 mm) layers negatively influenced TCT. Optical densitometry of the anterior (0-2 mm and 2-6 mm), center (0-2 mm), posterior (2-6 mm) and total (2-6 mm) layers correlated positively with ACE and PCE, whereas the posterior layer (0-2 mm) correlated negatively. CONCLUSION: Optical densitometry was correlated with biomechanical and morphological parameters in keratoconus, suggesting its potential as a diagnostic indicator for assessing keratoconus progression and treatment efficacy.


Subject(s)
Cornea , Corneal Topography , Densitometry , Keratoconus , Humans , Keratoconus/diagnosis , Keratoconus/physiopathology , Cross-Sectional Studies , Female , Densitometry/methods , Male , Cornea/diagnostic imaging , Cornea/pathology , Adult , Corneal Topography/methods , Young Adult , Adolescent , Middle Aged , Biomechanical Phenomena
4.
J Am Chem Soc ; 146(26): 17765-17772, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38902874

ABSTRACT

Chirality, a fundamental attribute of nature, significantly influences a wide range of phenomena related to physical properties, chemical reactions, biological pharmacology, and so on. As a pivotal aspect of chirality research, chirality recognition contributes to the synthesis of complex chiral products from simple chiral compounds and exhibits intricate interplay between chiral materials. However, macroscopic detection technologies cannot unveil the dynamic process and intrinsic mechanisms of single-molecule chirality recognition. Herein, we present a single-molecule detection platform based on graphene-molecule-graphene single-molecule junctions to measure the chirality recognition involving interactions between amines and chiral alcohols. This approach leads to the realization of in situ and real-time direct observation of chirality recognition at the single-molecule level, demonstrating that chiral alcohols exhibit compelling potential to induce the formation of the corresponding chiral configuration of molecules. The amalgamation of theoretical analyses with experimental findings reveals a synergistic action between electrostatic interactions and steric hindrance effects in the chirality recognition process, thus substantiating the microscopic mechanism governing the chiral structure-activity relationship. These studies open up a pathway for exploring novel chiral phenomena from the fundamental limits of chemistry, such as chiral origin and chiral amplification, and offer important insights into the precise synthesis of chiral materials.

5.
Adv Sci (Weinh) ; : e2402378, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940415

ABSTRACT

Multiplexing technology creates several orthogonal data channels and dimensions for high-density information encoding and is irreplaceable in large-capacity information storage, and communication, etc. The multiplexing dimensions are constructed by light attributes and spatial dimensions. However, limited by the degree of freedom of interaction between light and material structure parameters, the multiplexing dimension exploitation method is still confused. Herein, a 7D Spin-multiplexing technique is proposed. Spin structures with four independent attributes (color center type, spin axis, spatial distribution, and dipole direction) are constructed as coding basic units. Based on the four independent spin physical effects, the corresponding photoluminescence wavelength, magnetic field, microwave, and polarization are created into four orthogonal multiplexing dimensions. Combined with the 3D of space, a 7D multiplexing method is established, which possesses the highest dimension number compared with 6 dimensions in the previous study. The basic spin unit is prepared by a self-developed laser-induced manufacturing process. The free state information of spin is read out by four physical quantities. Based on the multiple dimensions, the information is highly dynamically multiplexed to enhance information storage efficiency. Moreover, the high-dynamic in situ image encryption/marking is demonstrated. It implies a new paradigm for ultra-high-capacity storage and real-time encryption.

6.
Angew Chem Int Ed Engl ; : e202406708, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38828797

ABSTRACT

Covalent adaptable networks (CANs), leveraging the dynamic exchange of covalent bonds, emerge as a promising material to address the challenge of irreversible cross-linking in thermosetting polymers. In this work, we explore the introduction of a catalyst-free and associative C=C/C=N metathesis reaction into thermosetting polyurethanes, creating CANs with superior stability, solvent resistance, and thermal/mechanical properties. By incorporating this dynamic exchange reaction, stress-relaxation is significantly accelerated compared to imine-bond-only networks, with the rate adjustable by modifying substituents in the ortho position of the dynamic double bonds. The obtained plasticity enables recycle without altering the chemical structure or mechanical properties, and is also found to be vital for achieving shape memory functions with complex spatial structures. This metathesis reaction as a new dynamic crosslinker of polymer networks has the potential to accelerate the ongoing exploration of malleable and functional thermoset polymers.

8.
JACS Au ; 4(5): 1954-1965, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38818060

ABSTRACT

Materials with stimuli-responsive purely organic room-temperature phosphorescence (RTP) exempt from exquisite molecular design and complex preparation are highly desirable but still relatively rare. Moreover, most of them work in a single switching mode. Herein, we employ a versatile host-guest-doped strategy to facilely construct efficient RTP systems with multimode stimuli-responsiveness without ingenious molecular design. By conveniently doping butterfly-like guests, namely, N,N'-diphenyl-dihydrodibenzo[a,c]phenazines (DPACs), featured with vibration-induced emission into the small-molecular hosts via various methods, RTP systems with finely tunable photophysical properties are readily obtained. Through systematic mechanistic studies and with the aid of a series of control experiments, we unveil the critical role of the host crystallinity in achieving efficient RTP. By virtue of the inherent environmental sensitivity of both RTP and fluorescence of the DPACs, our systems exhibit multiple-stimuli-responsiveness with the luminescence not only switching between the fluorescence and phosphorescence but also continuously changing in the fluorescence color. Advanced dynamic anticounterfeiting and multilevel information encryption is thereby realized.

9.
Adv Mater ; : e2403880, 2024 May 09.
Article in English | MEDLINE | ID: mdl-38723049

ABSTRACT

Classic approaches to integrate flexible capacitive sensor performance are to on-demand microstructuring dielectric layers and to adjust dielectric material compositions via the introduction of insoluble carbon additives (to increase sensitivity) or dynamic interactions (to achieve self-healing). However, the sensor's enhanced performances often come with increased material complexity, discouraging its circular economy. Herein, a new intrinsic self-healable, closed-loop recyclable dielectric layer material, a fully nature-derived dynamic covalent poly(disulfide) decorated with rich H bonding and metal-catechol complexations is introduced. The polymer network possesses a mechanically ductile character with an Arrhenius-type temperature-dependent viscoelasticity. The assembled capacitive pressure sensor is able to achieve a sensitivity of up to 9.26 kPa-1, fast response/recovery time of 32/24 ms, and can deliver consistent signals of continuous consecutive cycles even after being self-healed or closed-loop recycled for real-time detection of human motions. This is expected to be of high interest for current capacitive sensing research to move toward a life-like, high performance, and circular economy direction.

10.
Nature ; 630(8017): 631-635, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38811739

ABSTRACT

The increasing demands for more efficient and brighter thin-film light-emitting diodes (LEDs) in flat-panel display and solid-state lighting applications have promoted research into three-dimensional (3D) perovskites. These materials exhibit high charge mobilities and low quantum efficiency droop1-6, making them promising candidates for achieving efficient LEDs with enhanced brightness. To improve the efficiency of LEDs, it is crucial to minimize nonradiative recombination while promoting radiative recombination. Various passivation strategies have been used to reduce defect densities in 3D perovskite films, approaching levels close to those of single crystals3. However, the slow radiative (bimolecular) recombination has limited the photoluminescence quantum efficiencies (PLQEs) of 3D perovskites to less than 80% (refs. 1,3), resulting in external quantum efficiencies (EQEs) of LED devices of less than 25%. Here we present a dual-additive crystallization method that enables the formation of highly efficient 3D perovskites, achieving an exceptional PLQE of 96%. This approach promotes the formation of tetragonal FAPbI3 perovskite, known for its high exciton binding energy, which effectively accelerates the radiative recombination. As a result, we achieve perovskite LEDs with a record peak EQE of 32.0%, with the efficiency remaining greater than 30.0% even at a high current density of 100 mA cm-2. These findings provide valuable insights for advancing the development of high-efficiency and high-brightness perovskite LEDs.

11.
Nat Commun ; 15(1): 3855, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38719820

ABSTRACT

Converting elementary sulfur into sulfur-rich polymers provides a sustainable strategy to replace fossil-fuel-based plastics. However, the low ring strain of eight-membered rings, i.e., S8 monomers, compromises their ring-opening polymerization (ROP) due to lack of an enthalpic driving force and as a consequence, poly(sulfur) is inherently unstable. Here we report that copolymerization with cyclic disulfides, e.g., 1,2-dithiolanes, can enable a simple and energy-saving way to convert elementary sulfur into sulfur-rich thermoplastics. The key strategy is to combine two types of ROP-both mediated by disulfide bond exchange-to tackle the thermodynamic instability of poly(sulfur). Meanwhile, the readily modifiable sidechain of the cyclic disulfides provides chemical space to engineer the mechanical properties and dynamic functions over a large range, e.g., self-repairing ability and degradability. Thus, this simple and robust system is expected to be a starting point for the organic transformation of inorganic sulfur toward sulfur-rich functional and green plastics.

13.
Angew Chem Int Ed Engl ; : e202407385, 2024 May 12.
Article in English | MEDLINE | ID: mdl-38736176

ABSTRACT

Circularly polarized luminescence (CPL) is promising for applications in many fields. However, most systems involving CPL are within the visible range; near-infrared (NIR) CPL-active materials, especially those that exhibit high glum values and can be controlled spatially and temporally, are rare. Herein, dynamic NIR-CPL with a glum value of 2.5×10-2 was achieved through supramolecular coassembly and energy-transfer strategies. The chiral assemblies formed by the coassembly between adenosine triphosphate (ATP) and a pyrene derivative exhibited a red CPL signal (glum of 10-3). The further introduction of sulfo-cyanine5 resulted in a energy-transfer process, which not only led to the NIR CPL but also increased the glum value to 10-2. Temporal control of these chiral assemblies was realized by introducing alkaline phosphatase to fabricate a biomimetic enzyme-catalyzed network, allowing the dynamic NIR CPL signal to be turned on. Based on these enzyme-regulated temporally controllable dynamic CPL-active chiral assemblies, a multilevel information encryption system was further developed. This study provides a pioneering example for the construction of dynamic NIR CPL materials with the ability to perform temporal control via the supramolecular assembly strategy, which is expected to aid in the design of supramolecular complex systems that more closely resemble natural biological systems.

14.
Chembiochem ; : e202400361, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38767267

ABSTRACT

RNA modifications play crucial roles in regulating gene expression and cellular homeostasis. Modulating RNA modifications, particularly by targeting the enzymes responsible for their catalysis, has emerged as a promising therapeutic strategy. However, limitations, such as the lack of identified modifying enzymes and compensatory mechanisms, hinder targeted interventions. Chemical approaches independent of enzymatic activity offer an alternative strategy for RNA modification modulation. Here, we present the identification of 2-chloro-3,5-dinitrobenzoic acid as a highly effective photochemical deprenylase of i6A RNA. This method demonstrates exceptional selectivity towards i6A, converting its substituent into a "N-doped" ozonide, which upon hydrolysis releases natural adenine. We believe that this chemical approach will pave the way for a better understanding of RNA modification biology and the development of novel therapeutic modalities.

15.
J Nanobiotechnology ; 22(1): 270, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38769551

ABSTRACT

Rheumatoid arthritis (RA) is a chronic autoimmune disease of yet undetermined etiology that is accompanied by significant oxidative stress, inflammatory responses,  and damage to joint tissues. In this study, we designed chondroitin sulfate (CS)-modified tragacanth gum-gelatin composite nanocapsules (CS-Cur-TGNCs) loaded with curcumin nanocrystals (Cur-NCs), which rely on the ability of CS to target CD44 to accumulate drugs in inflamed joints. Cur was encapsulated in the form of nanocrystals into tragacanth gum-gelatin composite nanocapsules (TGNCs) by using an inborn microcrystallization method, which produced CS-Cur-TGNCs with a particle size of approximately 80 ± 11.54 nm and a drug loading capacity of 54.18 ± 5.17%. In an in vitro drug release assay, CS-Cur-TGNCs showed MMP-2-responsive properties. During the treatment of RA, CS-Cur-TGNCs significantly inhibited oxidative stress, promoted the polarization of M2-type macrophages to M1-type macrophages, and decreased the expression of inflammatory factors (TNF-α, IL-1ß, and IL-6). In addition, it also exerted excellent anti-inflammatory effects, and significantly alleviated the swelling of joints during the treatment of gouty arthritis (GA). Therefore, CS-Cur-TGNCs, as a novel drug delivery system, could lead to new ideas for clinical therapeutic regimens for RA and GA.


Subject(s)
Chondroitin Sulfates , Curcumin , Gelatin , Nanocapsules , Nanoparticles , Tragacanth , Curcumin/pharmacology , Curcumin/chemistry , Chondroitin Sulfates/chemistry , Gelatin/chemistry , Animals , Nanocapsules/chemistry , Nanoparticles/chemistry , Mice , Tragacanth/chemistry , RAW 264.7 Cells , Oxidative Stress/drug effects , Arthritis, Rheumatoid/drug therapy , Male , Particle Size , Anti-Inflammatory Agents/pharmacology , Anti-Inflammatory Agents/chemistry , Macrophages/metabolism , Macrophages/drug effects , Drug Liberation , Rats
16.
Front Microbiol ; 15: 1372078, 2024.
Article in English | MEDLINE | ID: mdl-38605705

ABSTRACT

Introduction: An unprecedented surge of Omicron infections appeared nationwide in China in December 2022 after the adjustment of the COVID-19 response policy. Here, we report the clinical and genomic characteristics of SARS-CoV-2 infections among children in Shanghai during this outbreak. Methods: A total of 64 children with symptomatic COVID-19 were enrolled. SARS-CoV-2 whole genome sequences were obtained using next-generation sequencing (NGS) technology. Patient demographics and clinical characteristics were compared between variants. Phylogenetic tree, mutation spectrum, and the impact of unique mutations on SARS-CoV-2 proteins were analysed in silico. Results: The genomic monitoring revealed that the emerging BA.5.2.48 and BF.7.14 were the dominant variants. The BA.5.2.48 infections were more frequently observed to experience vomiting/diarrhea and less frequently present cough compared to the BF.7.14 infections among patients without comorbidities in the study. The high-frequency unique non-synonymous mutations were present in BA.5.2.48 (N:Q241K) and BF.7.14 (nsp2:V94L, nsp12:L247F, S:C1243F, ORF7a:H47Y) with respect to their parental lineages. Of these mutations, S:C1243F, nsp12:L247F, and ORF7a:H47Y protein were predicted to have a deleterious effect on the protein function. Besides, nsp2:V94L and nsp12:L247F were predicted to destabilize the proteins. Discussion: Further in vitro to in vivo studies are needed to verify the role of these specific mutations in viral fitness. In addition, continuous genomic monitoring and clinical manifestation assessments of the emerging variants will still be crucial for the effective responses to the ongoing COVID-19 pandemic.

17.
Mol Neurobiol ; 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38662299

ABSTRACT

Numerous neurological disorders share a fatal pathologic process known as glutamate excitotoxicity. Among which, ischemic stroke is the major cause of mortality and disability worldwide. For a long time, the main idea of developing anti-excitotoxic neuroprotective agents was to block glutamate receptors. Despite this, there has been little successful clinical translation to date. After decades of "neuron-centered" views, a growing number of studies have recently revealed the importance of non-neuronal cells. Glial cells, cerebral microvascular endothelial cells, blood cells, and so forth are extensively engaged in glutamate synthesis, release, reuptake, and metabolism. They also express functional glutamate receptors and can listen and respond for fast synaptic transmission. This broadens the thoughts of developing excitotoxicity antagonists. In this review, the critical contribution of non-neuronal cells in glutamate excitotoxicity during ischemic stroke will be emphasized in detail, and the latest research progress as well as corresponding therapeutic strategies will be updated at length, aiming to reconceptualize glutamate excitotoxicity in a non-neuronal perspective.

18.
Small ; : e2400240, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593333

ABSTRACT

In this work, Pt3Fe nanoparticles (Pt3Fe NPs) with the ordered internal structure and Pt-rich shells surrounded by plenty of Fe single atoms (Fe SAs) as active species (Pt3Fe NP-in-Fe SA) loaded in the carbon materials are successfully fabricated, which are abbreviated as island-in-sea structured (IISS) Pt3Fe NP-in-Fe SA catalysts. Moreover, the synergistic effect of O-bridging between Pt3Fe NPs and Fe SAs, and the ordered internal structured Pt3Fe NPs with Pt-rich shells of an optimal thickness contributes to the achievement of the local acidic environments on the surfaces of Pt3Fe NPs in the alkaline hydrogen evolution reaction (HER) and the enhancement of the desorption rate of *OH intermediate in the acidic oxygen reduction reaction (ORR). In addition, the electronic interactions between Pt3Fe NPs and dispersed Fe SAs cannot only provide efficient electrons transfer, but also prevent the aggregation and dissolution of Pt3Fe NPs. Furthermore, the overpotential and the half wave potential of the as-prepared IISS Pt3Fe NP-in-Fe SA catalysts toward the alkaline HER and toward the acidic ORR are 8 mV at a current density of 10 mA cm-2 and 0.933 V, respectively, which is 29 lower and 86 mV higher than those (37 mV and 0.847 V) of commercial Pt/C catalysts.

19.
Cell Mol Neurobiol ; 44(1): 39, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38649645

ABSTRACT

Spinal-cord injury (SCI) is a severe condition that can lead to limb paralysis and motor dysfunction, and its pathogenesis is not fully understood. The objective of this study was to characterize the differential gene expression and molecular mechanisms in the spinal cord of mice three days after spinal cord injury. By analyzing RNA sequencing data, we identified differentially expressed genes and discovered that the immune system and various metabolic processes play crucial roles in SCI. Additionally, we identified UHRF1 as a key gene that plays a significant role in SCI and found that SCI can be improved by suppressing UHRF1. These findings provide important insights into the molecular mechanisms of SCI and identify potential therapeutic targets that could greatly contribute to the development of new treatment strategies for SCI.


Subject(s)
CCAAT-Enhancer-Binding Proteins , Spinal Cord Injuries , Ubiquitin-Protein Ligases , Animals , Spinal Cord Injuries/physiopathology , Ubiquitin-Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Mice , CCAAT-Enhancer-Binding Proteins/metabolism , CCAAT-Enhancer-Binding Proteins/genetics , Motor Activity/physiology , Mice, Inbred C57BL , Recovery of Function/physiology , Female , Spinal Cord/metabolism , Spinal Cord/pathology , Gene Expression Regulation
20.
Article in English | MEDLINE | ID: mdl-38683903

ABSTRACT

Graphene is a promising material for thermoacoustic sources due to its extremely low heat capacity per unit area and high thermal conductivity. However, current graphene thermoacoustic devices have limited device area and relatively high cost, which limit their applications of daily use. Here, we adopt a dip-coating method to fabricate a large-scale and cost-effective graphene sound source. This sound source has the three-dimensional (3D) porous structure that can increase the contact area between graphene and air, thus assisting heat to release into the air. In this method, polyurethane (PU) is used as a support, and graphene nanoplates are attached onto the PU skeleton so that a highly flexible graphene foam (GrF) device is obtained. At a measuring distance of 1 mm, it can emit sound at up to 70 dB under the normalized input power of 1 W. Considering its unique porous structure, we establish a thermoacoustic analysis model to simulate the acoustic performance of GrF. Furthermore, the obtained GrF can be made up to 44 in. (100 cm × 50 cm) in size, and it has good flexibility and processability, which broadens the application fields of GrF loudspeakers. It can be attached to the surfaces of objects with different shapes, making it suitable to be used as a large-area speaker in automobiles, houses, and other application scenarios, such as neck mounted speaker. In addition, it can also be widely used as a fully flexible in-ear earphone.

SELECTION OF CITATIONS
SEARCH DETAIL
...