Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 969
Filter
1.
ACS Nano ; 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38984372

ABSTRACT

Multiscale design of catalyst layers (CLs) is important to advancing hydrogen electrochemical conversion devices toward commercialized deployment, which has nevertheless been greatly hampered by the complex interplay among multiscale CL components, high synthesis cost and vast design space. We lack rational design and optimization techniques that can accurately reflect the nanostructure-performance relationship and cost-effectively search the design space. Here, we fill this gap with a deep generative artificial intelligence (AI) framework, GLIDER, that integrates recent generative AI, data-driven surrogate techniques and collective intelligence to efficiently search the optimal CL nanostructures driven by their electrochemical performance. GLIDER achieves realistic multiscale CL digital generation by leveraging the dimensionality-reduction ability of quantized vector-variational autoencoder. The powerful generative capability of GLIDER allows the efficient search of the optimal design parameters for the Pt-carbon-ionomer nanostructures of CLs. We also demonstrate that GLIDER is transferable to other fuel cell electrode microstructure generation, e.g., fibrous gas diffusion layers and solid oxide fuel cell anode. GLIDER is of potential as a digital tool for the design and optimization of broad electrochemical energy devices.

2.
Article in English | MEDLINE | ID: mdl-38869878

ABSTRACT

Importance: Significant insurance status disparities have been demonstrated in head and neck cancer (HNC) outcomes. The effects of insurance status on HNC outcomes may be explained by differential access to high-quality care. Objective: To evaluate the association of insurance status with the quality of the treating hospital and receipt of guideline-compliant care among patients with HNC. Design, Setting, and Participants: This retrospective cohort study of data from the California Cancer Registry dataset linked with discharge records and hospital characteristics from the California Department of Health Care Access and Information included adult patients with HNC diagnosed between January 1, 2010, and December 31, 2019. Data were analyzed from May 10, 2023, to March 25, 2024. Exposures: Insurance status: commercial, Medicare, Medicaid, uninsured, other, or unknown. Main Outcomes and Measures: Quality of the treating hospital (tertiles), receipt of National Comprehensive Cancer Network guideline-compliant care, and overall survival. Results: A total of 23 933 patients (mean [SD] age, 64.8 [12.3] years; 75.3% male) met the inclusion criteria. Treatment in top-tertile hospitals (hazard ratio, 0.87; 95% CI, 0.79-0.95) was associated with improved overall survival compared with treatment in bottom-tertile hospitals. Medicare (odds ratio [OR], 0.78; 95% CI, 0.73-0.84), Medicaid (OR, 0.60; 95% CI, 0.54-0.66), and uninsured (OR, 0.38; 95% CI, 0.29-0.49) status were associated with lower likelihood of treatment in high-quality hospitals compared with commercial insurance. Among patients with advanced disease, Medicaid (OR, 0.72; 95% CI, 0.62-0.83) and uninsured (OR, 0.64; 95% CI, 0.44-0.93) patients were less likely to receive dual-modality therapy. Among patients with surgically resected advanced disease, Medicaid coverage (OR, 0.73; 95% CI, 0.58-0.93) was associated with lower likelihood of receiving adjuvant radiotherapy. Conclusions and Relevance: This study found significant insurance disparities in quality of care among patients with HNC. These findings highlight the need for continued health insurance reform in the US to improve the quality of insurance coverage, in addition to expanding access to health insurance.

3.
Nat Commun ; 15(1): 5046, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38871717

ABSTRACT

People with lower extremity peripheral artery disease (PAD) have increased oxidative stress, impaired mitochondrial activity, and poor walking performance. NAD+ reduces oxidative stress and is an essential cofactor for mitochondrial respiration. Oral nicotinamide riboside (NR) increases bioavailability of NAD+ in humans. Among 90 people with PAD, this randomized double-blind clinical trial assessed whether 6-months of NR, with and without resveratrol, improves 6-min walk distance, compared to placebo, at 6-month follow-up. At 6-month follow-up, compared to placebo, NR significantly improved 6-min walk (+7.0 vs. -10.6 meters, between group difference: +17.6 (90% CI: + 1.8,+∞). Among participants who took at least 75% of study pills, compared to placebo, NR improved 6-min walk by 31.0 meters and NR + resveratrol improved 6-min walk by 26.9 meters. In this work, NR meaningfully improved 6-min walk, and resveratrol did not add benefit to NR alone in PAD. A larger clinical trial to confirm these findings is needed.


Subject(s)
Niacinamide , Peripheral Arterial Disease , Pyridinium Compounds , Resveratrol , Humans , Peripheral Arterial Disease/drug therapy , Niacinamide/analogs & derivatives , Niacinamide/therapeutic use , Male , Female , Aged , Double-Blind Method , Resveratrol/therapeutic use , Resveratrol/pharmacology , Middle Aged , Walking , Treatment Outcome , Oxidative Stress/drug effects
4.
Front Public Health ; 12: 1399672, 2024.
Article in English | MEDLINE | ID: mdl-38887242

ABSTRACT

Objectives: The aim of this study is to estimate the excess mortality burden of influenza virus infection in China from 2012 to 2021, with a concurrent analysis of its associated disease manifestations. Methods: Laboratory surveillance data on influenza, relevant population demographics, and mortality records, including cause of death data in China, spanning the years 2012 to 2021, were incorporated into a comprehensive analysis. A negative binomial regression model was utilized to calculate the excess mortality rate associated with influenza, taking into consideration factors such as year, subtype, and cause of death. Results: There was no evidence to indicate a correlation between malignant neoplasms and any subtype of influenza, despite the examination of the effect of influenza on the mortality burden of eight diseases. A total of 327,520 samples testing positive for influenza virus were isolated between 2012 and 2021, with a significant decrease in the positivity rate observed during the periods of 2012-2013 and 2019-2020. China experienced an average annual influenza-associated excess deaths of 201721.78 and an average annual excess mortality rate of 14.53 per 100,000 people during the research period. Among the causes of mortality that were examined, respiratory and circulatory diseases (R&C) accounted for the most significant proportion (58.50%). Fatalities attributed to respiratory and circulatory diseases exhibited discernible temporal patterns, whereas deaths attributable to other causes were dispersed over the course of the year. Conclusion: Theoretically, the contribution of these disease types to excess influenza-related fatalities can serve as a foundation for early warning and targeted influenza surveillance. Additionally, it is possible to assess the costs of prevention and control measures and the public health repercussions of epidemics with greater precision.


Subject(s)
Cause of Death , Influenza, Human , Humans , Influenza, Human/mortality , Influenza, Human/epidemiology , China/epidemiology , Adult , Middle Aged , Male , Female , Child, Preschool , Adolescent , Child , Infant , Aged , Young Adult , Population Surveillance
5.
Ann Neurol ; 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38888142

ABSTRACT

OBJECTIVE: To determine whether plasma phosphorylated-Tau181 (pTau181) could be used as a diagnostic biomarker of concurrent Alzheimer's disease neuropathologic change (ADNC) or amyloidosis alone, as well as a prognostic, monitoring, and susceptibility/risk biomarker for clinical outcomes in Lewy body disease (LBD). METHODS: We studied 565 participants: 94 LBD with normal cognition, 83 LBD with abnormal cognition, 114 with Alzheimer's disease, and 274 cognitively normal. Plasma pTau181 levels were measured with the Lumipulse G platform. Diagnostic accuracy for concurrent ADNC and amyloidosis was assessed with Receiver Operating Characteristic curves in a subset of participants with CSF pTau181/Aß42, and CSF Aß42/Aß40 or amyloid-ß PET, respectively. Linear mixed effects models were used to examine the associations between baseline and longitudinal plasma pTau181 levels and clinical outcomes. RESULTS: Plasma pTau181 predicted concurrent ADNC and amyloidosis in LBD with abnormal cognition with 87% and 72% accuracy, respectively. In LBD patients with abnormal cognition, higher baseline plasma pTau181 was associated with worse baseline MoCA and CDR-SB, as well as accelerated decline in CDR-SB. Additionally, in this group, rapid increases in plasma pTau181 over 3 years predicted a faster decline in CDR-SB and memory. In LBD patients with normal cognition, there was no association between baseline or longitudinal plasma pTau181 levels and clinical outcomes; however, elevated pTau181 at baseline increased the risk of conversion to cognitive impairment. INTERPRETATION: Our findings suggest that plasma pTau181 is a promising biomarker for concurrent ADNC and amyloidosis in LBD. Furthermore, plasma pTau181 holds potential as a prognostic, monitoring, and susceptibility/risk biomarker, predicting disease progression in LBD. ANN NEUROL 2024.

6.
JAMA Intern Med ; 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38848477

ABSTRACT

Importance: There is an urgent need to identify treatments for postacute sequelae of SARS-CoV-2 infection (PASC). Objective: To assess the efficacy of a 15-day course of nirmatrelvir-ritonavir in reducing the severity of select PASC symptoms. Design, Setting, and Participants: This was a 15-week blinded, placebo-controlled, randomized clinical trial conducted from November 2022 to September 2023 at Stanford University (California). The participants were adults with moderate to severe PASC symptoms of 3 months or longer duration. Interventions: Participants were randomized 2:1 to treatment with oral nirmatrelvir-ritonavir (NMV/r, 300 mg and 100 mg) or with placebo-ritonavir (PBO/r) twice daily for 15 days. Main Outcomes and Measures: Primary outcome was a pooled severity of 6 PASC symptoms (fatigue, brain fog, shortness of breath, body aches, gastrointestinal symptoms, and cardiovascular symptoms) based on a Likert scale score at 10 weeks. Secondary outcomes included symptom severity at different time points, symptom burden and relief, patient global measures, Patient-Reported Outcomes Measurement Information System (PROMIS) measures, orthostatic vital signs, and sit-to-stand test change from baseline. Results: Of the 155 participants (median [IQR] age, 43 [34-54] years; 92 [59%] females), 102 were randomized to the NMV/r group and 53 to the PBO/r group. Nearly all participants (n = 153) had received the primary series for COVID-19 vaccination. Mean (SD) time between index SARS-CoV-2 infection and randomization was 17.5 (9.1) months. There was no statistically significant difference in the model-derived severity outcome pooled across the 6 core symptoms at 10 weeks between the NMV/r and PBO/r groups. No statistically significant between-group differences were found at 10 weeks in the Patient Global Impression of Severity or Patient Global Impression of Change scores, summative symptom scores, and change from baseline to 10 weeks in PROMIS fatigue, dyspnea, cognitive function, and physical function measures. Adverse event rates were similar in NMV/r and PBO/r groups and mostly of low grade. Conclusions and Relevance: The results of this randomized clinical trial showed that a 15-day course of NMV/r in a population of patients with PASC was generally safe but did not demonstrate a significant benefit for improving select PASC symptoms in a mostly vaccinated cohort with protracted symptom duration. Further studies are needed to determine the role of antivirals in the treatment of PASC. Trial Registration: ClinicalTrials.gov Identifier: NCT05576662.

7.
Cancer Lett ; 597: 217084, 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38925362

ABSTRACT

The intricate interplay among extracellular vesicles, cancer stemness properties, and the immune system significantly impacts hepatocellular carcinoma (HCC) progression, treatment response, and patient prognosis. Extracellular vesicles (EVs), which are membrane-bound structures, play a pivotal role in conveying proteins, lipids, and nucleic acids between cells, thereby serving as essential mediators of intercellular communication. Since a lot of current research focuses on small extracellular vesicles (sEVs), with diameters ranging from 30 nm to 200 nm, this review emphasizes the role of sEVs in the context of interactions between HCC stemness-bearing cells and the immune cells. sEVs offer promising opportunities for the clinical application of innovative diagnostic and prognostic biomarkers in HCC. By specifically targeting sEVs, novel therapeutics aimed at cancer stemness can be developed. Ongoing investigations into the roles of sEVs in cancer stemness and immune regulation in HCC will broaden our understanding and ultimately pave the way for groundbreaking therapeutic interventions.

8.
Biomedicines ; 12(6)2024 Jun 20.
Article in English | MEDLINE | ID: mdl-38927580

ABSTRACT

Intracerebral hemorrhage (ICH) remains a devastating disease with high mortality, and there is a lack of effective strategies to improve functional outcomes. The primary injury of ICH is mechanical damage to brain tissue caused by the hematoma. Secondary injury, resulting from inflammation, red cell lysis, and thrombin production, presents a potential target for therapeutic intervention. Inflammation, crucial in secondary brain injury, involves both cellular and molecular components. MicroRNAs (miRNAs) are vital regulators of cell growth, differentiation, and apoptosis. Their deregulation may lead to diseases, and modulating miRNA expression has shown therapeutic potential, especially in cancer. Recent studies have implicated miRNAs in the pathogenesis of stroke, affecting endothelial dysfunction, neurovascular integrity, edema, apoptosis, inflammation, and extracellular matrix remodeling. Preclinical and human studies support the use of miRNA-directed gene modulation as a therapeutic strategy for ICH. Our study focused on the effects of miR-195 in ICH models. Neurological tests, including the corner turn and grip tests, indicated that miR-195 treatment led to improvements in motor function impairments caused by ICH. Furthermore, miR-195-5p significantly reduced brain edema in the ipsilateral hemisphere and restored blood-brain barrier (BBB) integrity, as shown by reduced Evans blue dye extravasation. These results suggest miR-195-5p's potential in attenuating ICH-induced apoptosis, possibly related to its influence on MMP-9 and MMP-2 expression, enzymes associated with secondary brain injury. The anti-apoptotic effects of miR-195-5p, demonstrated through TUNEL assays, further underscore its therapeutic promise in addressing the secondary brain injury and apoptosis associated with ICH. In conclusion, miR-195-5p demonstrates a significant neuroprotective effect against ICH-induced neural damage, brain edema, and BBB disruption, primarily through the downregulation of MMP-9 and MMP-2. Our findings indicate that miR-195-5p holds therapeutic potential in managing cerebral cell death following ICH.

9.
ACS Omega ; 9(21): 22744-22753, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38826525

ABSTRACT

The biotransformation of ginsenosides using microorganisms represents a promising and ecofriendly approach for the production of rare ginsenosides. The present study reports on the biotransformation of ginsenoside Rb1 using the fungus Irpex lacteus, resulting in the production of ginsenoside Rd and seven rare ginsenosides with novel structures. Employing high-performance liquid chromatography coupled with high-resolution tandem mass spectrometry, the identities of the transformation products were rapidly determined. Two sets of isomers with molecular weights of 980.56 and 962.55 were discovered among the seven rare ginsenosides, which were generated through the isomerization of the olefin chain in the protopanaxadiol (PPD)-type ginsenoside skeleton. Each isomer exhibited characteristic fragment ions and neutral loss patterns in their tandem mass spectra, providing evidence of their unique structures. Time-course experiments demonstrated that the transformation reaction reached equilibrium after 14 days, with Rb1 initially generating Rd and compound 5, followed by the formation of other rare ginsenosides. The biotransformation process catalyzed by I. lacteus was found to involve not only the typical deglycosylation reaction at the C-20 position but also hydroxylation at the C-22 and C-23 positions, as well as hydrogenation, transfer, and cyclization of the double bond at the C-24(25) position. These enzymatic capabilities extend to the structural modification of other PPD-type ginsenosides such as Rc and Rd, revealing the potential of I. lacteus for the production of a wider range of rare ginsenosides. The transformation activities observed in I. lacteus are unprecedented among fungal biotransformations of ginsenosides. This study highlights the application of a medicinal fungi-based biotransformation strategy for the generation of rare ginsenosides with enhanced structural diversity, thereby expanding the variety of bioactive compounds derived from ginseng.

10.
Cancer Cell ; 42(7): 1239-1257.e7, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38942025

ABSTRACT

Global investigation of medulloblastoma has been hindered by the widespread inaccessibility of molecular subgroup testing and paucity of data. To bridge this gap, we established an international molecularly characterized database encompassing 934 medulloblastoma patients from thirteen centers across China and the United States. We demonstrate how image-based machine learning strategies have the potential to create an alternative pathway for non-invasive, presurgical, and low-cost molecular subgroup prediction in the clinical management of medulloblastoma. Our robust validation strategies-including cross-validation, external validation, and consecutive validation-demonstrate the model's efficacy as a generalizable molecular diagnosis classifier. The detailed analysis of MRI characteristics replenishes the understanding of medulloblastoma through a nuanced radiographic lens. Additionally, comparisons between East Asia and North America subsets highlight critical management implications. We made this comprehensive dataset, which includes MRI signatures, clinicopathological features, treatment variables, and survival data, publicly available to advance global medulloblastoma research.


Subject(s)
Cerebellar Neoplasms , Magnetic Resonance Imaging , Medulloblastoma , Medulloblastoma/genetics , Medulloblastoma/diagnostic imaging , Medulloblastoma/pathology , Humans , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/diagnostic imaging , Cerebellar Neoplasms/pathology , Magnetic Resonance Imaging/methods , Child , Female , Male , Adolescent , Artificial Intelligence , Child, Preschool , China , Young Adult , United States , Adult , Prognosis , Infant , Machine Learning
11.
Metab Brain Dis ; 39(5): 871-884, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38842662

ABSTRACT

Inhibitor of apoptosis stimulating protein of p53 (iASPP) is related to the pathogenesis of several neurological disorders by affecting the oxidative stress and survival of neurons. However, whether iASPP has a role in Parkinson disease (PD) remains to be determined. This work explored the potential regulatory effect of iASPP in an in vitro model of PD based on 1-methyl-4-phenylpyridinium (MPP+)-evoked neurotoxicity of dopaminergic neurons in culture. MN9D neurons were treated with MPP+ at 200 µM in the culture media for 24 h to induce neurotoxicity. Overexpression and silencing of iASPP in neurons were achieved by infecting recombinant adenovirus expressing iASPP and sh-iASPP, respectively. Protein expression was examined by immunoblotting. MPP+-evoked neurotoxicity of dopaminergic neurons was determined by cell viability, TUNEL, and flow cytometric assays. The transcriptional activity of nuclear erythroid factor 2-like 2 (Nrf2) was assessed by luciferase reporter assay. Kelch-like ECH-associated protein 1 (Keap1)-knockout neurons were generated by lentiCRISPR/Cas9-Keap1 constructs. Expression levels of iASPP declined in MPP+-stimulated neurons. Overexpression of iASPP in neurons exhibited inhibitory effects on MPP+-evoked apoptosis, α-synuclein accumulation, and oxidative stress, while iASPP-deficient neurons were more sensitive to MPP+-induced neurotoxicity. Overexpression of iASPP led to an enhancing effect on Nrf2 activation in MPP+-stimulated neurons. Mechanism research revealed that iASPP may contribute to the activation of Nrf2 by competing with Nrf2 in binding with Keap1. Notably, the regulatory effect of iASPP on Nrf2 was diminished in Keap1-knockout neurons. The chemical inhibition of Nrf2 or knockdown of Nrf2 abrogated the protective effects of iASPP on MPP+-induced neurotoxicity. To conclude, iASPP protects dopaminergic neurons against MPP+-induced neurotoxicity through modulation of the Keap1/Nrf2 axis. Therefore, iASPP may play a crucial role in mediating the loss of dopaminergic neurons in PD, and targeting the iASPP-Nrf2 axis could be a promising strategy for treating PD.


Subject(s)
1-Methyl-4-phenylpyridinium , Dopaminergic Neurons , Kelch-Like ECH-Associated Protein 1 , NF-E2-Related Factor 2 , Repressor Proteins , Dopaminergic Neurons/metabolism , Dopaminergic Neurons/drug effects , Animals , 1-Methyl-4-phenylpyridinium/toxicity , Kelch-Like ECH-Associated Protein 1/metabolism , NF-E2-Related Factor 2/metabolism , Mice , Repressor Proteins/metabolism , Oxidative Stress/drug effects , Oxidative Stress/physiology , Apoptosis/drug effects , Parkinson Disease/metabolism
12.
Gut ; 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38839271

ABSTRACT

OBJECTIVE: Fat mass and obesity-associated protein (FTO), an eraser of N 6-methyadenosine (m6A), plays oncogenic roles in various cancers. However, its role in hepatocellular carcinoma (HCC) is unclear. Furthermore, small extracellular vesicles (sEVs, or exosomes) are critical mediators of tumourigenesis and metastasis, but the relationship between FTO-mediated m6A modification and sEVs in HCC is unknown. DESIGN: The functions and mechanisms of FTO and glycoprotein non-metastatic melanoma protein B (GPNMB) in HCC progression were investigated in vitro and in vivo. Neutralising antibody of syndecan-4 (SDC4) was used to assess the significance of sEV-GPNMB. FTO inhibitor CS2 was used to examine the effects on anti-PD-1 and sorafenib treatment. RESULTS: FTO expression was upregulated in patient HCC tumours. Functionally, FTO promoted HCC cell proliferation, migration and invasion in vitro, and tumour growth and metastasis in vivo. FTO knockdown enhanced the activation and recruitment of tumour-infiltrating CD8+ T cells. Furthermore, we identified GPNMB to be a downstream target of FTO, which reduced the m6A abundance of GPNMB, hence, stabilising it from degradation by YTH N 6-methyladenosine RNA binding protein F2. Of note, GPNMB was packaged into sEVs derived from HCC cells and bound to the surface receptor SDC4 of CD8+ T cells, resulting in the inhibition of CD8+ T cell activation. A potential FTO inhibitor, CS2, suppresses the oncogenic functions of HCC cells and enhances the sensitivity of anti-PD-1 and sorafenib treatment. CONCLUSION: Targeting the FTO/m6A/GPNMB axis could significantly suppress tumour growth and metastasis, and enhance immune activation, highlighting the potential of targeting FTO signalling with effective inhibitors for HCC therapy.

13.
J Colloid Interface Sci ; 671: 589-600, 2024 Oct.
Article in English | MEDLINE | ID: mdl-38820843

ABSTRACT

Coal-based oxygen electrocatalysts hold immense promise for cost-effective applications in rechargeable Zn-air batteries (ZABs) and the value-added, clean utilization of traditional coal resources. Herein, an electrospun membrane electrode comprising coal-derived carbon nanosheets and directly grown carbon nanotubes (CNS/CMF@CNT) was successfully synthesized. The hierarchical porous structure of the electrode, composed of multiple components, significantly facilitates mass and ion transportation, resulting in exceptional electrochemical performance. Employing Fe as the catalyst for CNT growth, the CNS/CMF@CNT electrode exhibits a remarkable onset potential of 0.96 V and a half-wave potential of 0.87 V in the oxygen reduction reaction (ORR). In-situ surface-enhanced Raman spectroscopy reveals that hydroxyl radical desorption on the surface of CNS/CMF@CNT(Fe) is the rate-determining step of the ORR. Notably, the aqueous ZAB featuring the CNS/CMF@CNT(Fe) electrode achieved a peak power density of 216.0 mW cm-2 at a current density of 414 mA cm-2 and maintained a voltage efficiency of 65.1 % after 2000 charge/discharge cycles at 5 mA cm-2. Furthermore, the all-solid-state ZAB incorporating this electrode displayed an open-circuit voltage of 1.43 V, a peak power density of 70.1 mW cm-2 at a current density of 110 mA cm-2, and a voltage efficiency of 66.5 % after 150 charge/discharge cycles. The utilization of abundant coal as the raw material for electrode fabrication not only brings conceivable economic benefits in ZAB construction, but also commendably advances the effective application of traditional coal resources in a more sustainable manner.

14.
Stat Med ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812276

ABSTRACT

Determining whether a surrogate marker can be used to replace a primary outcome in a clinical study is complex. While many statistical methods have been developed to formally evaluate a surrogate marker, they generally do not provide a way to examine heterogeneity in the utility of a surrogate marker. Similar to treatment effect heterogeneity, where the effect of a treatment varies based on a patient characteristic, heterogeneity in surrogacy means that the strength or utility of the surrogate marker varies based on a patient characteristic. The few methods that have been recently developed to examine such heterogeneity cannot accommodate censored data. Studies with a censored outcome are typically the studies that could most benefit from a surrogate because the follow-up time is often long. In this paper, we develop a robust nonparametric approach to assess heterogeneity in the utility of a surrogate marker with respect to a baseline variable in a censored time-to-event outcome setting. In addition, we propose and evaluate a testing procedure to formally test for heterogeneity at a single time point or across multiple time points simultaneously. Finite sample performance of our estimation and testing procedure are examined in a simulation study. We use our proposed method to investigate the complex relationship between change in fasting plasma glucose, diabetes, and sex hormones using data from the diabetes prevention program study.

16.
Sci Rep ; 14(1): 11184, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755303

ABSTRACT

Flood forecasting using traditional physical hydrology models requires consideration of multiple complex physical processes including the spatio-temporal distribution of rainfall, the spatial heterogeneity of watershed sub-surface characteristics, and runoff generation and routing behaviours. Data-driven models offer novel solutions to these challenges, though they are hindered by difficulties in hyperparameter selection and a decline in prediction stability as the lead time extends. This study introduces a hybrid model, the RS-LSTM-Transformer, which combines Random Search (RS), Long Short-Term Memory networks (LSTM), and the Transformer architecture. Applied to the typical Jingle watershed in the middle reaches of the Yellow River, this model utilises rainfall and runoff data from basin sites to simulate flood processes, and its outcomes are compared against those from RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models. It was evaluated against RS-LSTM, RS-Transformer, RS-BP, and RS-MLP models using the Nash-Sutcliffe Efficiency Coefficient (NSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and Bias percentage as metrics. At a 1-h lead time during calibration and validation, the RS-LSTM-Transformer model achieved NSE, RMSE, MAE, and Bias values of 0.970, 14.001m3/s, 5.304m3/s, 0.501% and 0.953, 14.124m3/s, 6.365m3/s, 0.523%, respectively. These results demonstrate the model's superior simulation capabilities and robustness, providing more accurate peak flow forecasts as the lead time increases. The study highlights the RS-LSTM-Transformer model's potential in flood forecasting and the advantages of integrating various data-driven approaches for innovative modelling.

17.
Free Radic Biol Med ; 220: 56-66, 2024 Aug 01.
Article in English | MEDLINE | ID: mdl-38697489

ABSTRACT

Apart from dopaminergic neurotoxicity, exposure to rotenone, a commonly used insecticide in agriculture, also adversely affects hippocampal and cortical neurons, resulting in cognitive impairments in mice. We recently established a role of microglia-mediated neuroinflammation in rotenone-elicited deficits of cognition, yet the mechanisms remain elusive. Here, we investigated the involvement of NADPH oxidase 2 (NOX2) catalytic subunit gp91phox in rotenone-induced cognitive deficits and the associated mechanisms. Our study demonstrated that rotenone exposure elevated expression of gp91phox and phosphorylation of the NOX2 cytosolic subunit p47phox, along with NADPH depletion in the hippocampus and cortex of mice, indicating NOX2 activation. Specific knockdown of gp91phox in microglia via adeno-associated virus delivery resulted in reduced microglial activation, proinflammatory gene expression and improved learning and memory capacity in rotenone-intoxicated mice. Genetic deletion of gp91phox also reversed rotenone-elicited cognitive dysfunction in mice. Furthermore, microglial gp91phox knockdown attenuated neuronal damage and synaptic loss in mice. This intervention also suppressed iron accumulation, disruption of iron-metabolism proteins and iron-dependent lipid peroxidation and restored the balance of ferroptosis-related parameters, including GPX4, SLC711, PTGS2, and ACSL4 in rotenone-lesioned mice. Intriguingly, pharmacological inhibition of ferroptosis with liproxstatin-1 conferred protection against rotenone-induced neurodegeneration and cognitive dysfunction in mice. In summary, our findings underscored the contribution of microglial gp91phox-dependent neuroinflammation and ferroptosis to learning and memory dysfunction in rotenone-lesioned mice. These results provided valuable insights into the pathogenesis of cognitive deficits associated with pesticide-induced Parkinsonism, suggesting potential therapeutic avenues for intervention.


Subject(s)
Ferroptosis , Memory Disorders , Microglia , NADPH Oxidase 2 , Neuroinflammatory Diseases , Rotenone , Animals , Mice , NADPH Oxidase 2/metabolism , NADPH Oxidase 2/genetics , Microglia/metabolism , Microglia/pathology , Microglia/drug effects , Rotenone/toxicity , Ferroptosis/drug effects , Neuroinflammatory Diseases/metabolism , Neuroinflammatory Diseases/pathology , Neuroinflammatory Diseases/chemically induced , Neuroinflammatory Diseases/genetics , Memory Disorders/chemically induced , Memory Disorders/metabolism , Memory Disorders/genetics , Memory Disorders/pathology , Male , Mice, Inbred C57BL , Hippocampus/metabolism , Hippocampus/pathology , Hippocampus/drug effects , Cognitive Dysfunction/chemically induced , Cognitive Dysfunction/metabolism , Cognitive Dysfunction/genetics , Cognitive Dysfunction/pathology , Neurons/metabolism , Neurons/pathology , Neurons/drug effects , Mice, Knockout
18.
medRxiv ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38746142

ABSTRACT

Importance: Studies of brain imaging and movements during REM sleep indicate basal ganglia involvement in pediatric acute-onset neuropsychiatric syndrome (PANS). Characterizing neurological findings commonly present in patients with PANS could improve diagnostic accuracy. Objective: To determine the prevalence of neurological soft signs which may reflect basal ganglia dysfunction (NSS-BG) in youth presenting with PANS and whether clinical characteristics of PANS correlate with NSS-BG. Design, Setting, and Participants: 135 new patients who were evaluated at the Stanford Children's Immune Behavioral Health Clinic between November 1, 2014 and March 1, 2020 and met strict PANS criteria were retrospectively reviewed for study inclusion. 16 patients were excluded because they had no neurological exam within the first three visits and within three months of clinical presentation. Main Outcomes and Measures: The following NSS-BG were recorded from medical record review: 1) glabellar tap reflex, 2) tongue movements, 3) milkmaid's grip, 4) choreiform movements, 5) spooning, and 6) overflow movements. We included data from prospectively collected symptoms and impairment scales. Results: The study included 119 patients: mean age at PANS onset was 8.2 years, mean age at initial presentation was 10.4 years, 55.5% were male, and 73.9% were non-Hispanic White. At least one NSS-BG was observed in 95/119 patients (79.8%). Patients had 2.1 NSS-BG on average. Patients with 4 or more NSS-BG had higher scores of global impairment (p=0.052) and more symptoms (p=0.008) than patients with 0 NSS-BG. There was no significant difference in age at visit or reported caregiver burden. On Poisson and linear regression, the number of NSS-BG was associated with global impairment (2.857, 95% CI: 0.092-5.622, p=0.045) and the number of symptoms (1.049, 95% CI: 1.018-1.082, p=0.002), but not age or duration of PANS at presentation. Conclusions and Relevance: We found a high prevalence of NSS-BG in patients with PANS and an association between NSS-BG and disease severity that is not attributable to younger age. PANS may have a unique NSS-BG profile, suggesting that targeted neurological exams may support PANS diagnosis.

19.
J Environ Manage ; 360: 121089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38733842

ABSTRACT

Baseflow is a crucial water source in the inland river basins of high-cold mountainous region, playing a significant role in maintaining runoff stability. It is challenging to select the most suitable baseflow separation method in data-scarce high-cold mountainous region and to evaluate effects of climate factors and underlying surface changes on baseflow variability and seasonal distribution characteristics. Here we attempt to address how meteorological factors and underlying surface changes affect baseflow using the Grey Wolf Optimizer Digital Filter Method (GWO-DFM) for rapid baseflow separation and the Long Short-Term Memory (LSTM) neural network model for baseflow prediction, clarifying interpretability of the LSTM model in baseflow forecasting. The proposed method was successfully implemented using a 63-year time series (1958-2020) of flow data from the Tai Lan River (TLR) basin in the high-cold mountainous region, along with 21 years of ERA5-land meteorological data and MODIS data (2000-2020). The results indicate that: (1) GWO-DFM can rapidly identify the optimal filtering parameters. It employs the arithmetic average of three methods, namely Chapman, Chapman-Maxwell and Eckhardt filter, as the best baseflow separation approach for the TLR basin. Additionally, the baseflow significantly increases after the second mutation of the baseflow rate. (2) Baseflow sources are mainly influenced by precipitation infiltration, glacier frozen soil layers, and seasonal ponding. (3) Solar radiation, temperature, precipitation, and NDVI are the primary factors influencing baseflow changes, with Nash-Sutcliffe efficiency coefficients exceeding 0.78 in both the LSTM model training and prediction periods. (4) Changes in baseflow are most influenced by solar radiation, temperature, and NDVI. This study systematically analyzes the changes in baseflow and response mechanisms in high-cold mountainous region, contributing to the management of water resources in mountainous basins under changing environmental conditions.


Subject(s)
Deep Learning , Rivers , Neural Networks, Computer , Models, Theoretical , Climate
20.
Biometrics ; 80(2)2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38771658

ABSTRACT

Limitations of using the traditional Cox's hazard ratio for summarizing the magnitude of the treatment effect on time-to-event outcomes have been widely discussed, and alternative measures that do not have such limitations are gaining attention. One of the alternative methods recently proposed, in a simple 2-sample comparison setting, uses the average hazard with survival weight (AH), which can be interpreted as the general censoring-free person-time incidence rate on a given time window. In this paper, we propose a new regression analysis approach for the AH with a truncation time τ. We investigate 3 versions of AH regression analysis, assuming (1) independent censoring, (2) group-specific censoring, and (3) covariate-dependent censoring. The proposed AH regression methods are closely related to robust Poisson regression. While the new approach needs to require a truncation time τ explicitly, it can be more robust than Poisson regression in the presence of censoring. With the AH regression approach, one can summarize the between-group treatment difference in both absolute difference and relative terms, adjusting for covariates that are associated with the outcome. This property will increase the likelihood that the treatment effect magnitude is correctly interpreted. The AH regression approach can be a useful alternative to the traditional Cox's hazard ratio approach for estimating and reporting the magnitude of the treatment effect on time-to-event outcomes.


Subject(s)
Proportional Hazards Models , Humans , Regression Analysis , Survival Analysis , Computer Simulation , Poisson Distribution , Biometry/methods , Models, Statistical
SELECTION OF CITATIONS
SEARCH DETAIL
...