Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biomed Environ Sci ; 28(8): 620-5, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26383601

ABSTRACT

Bacillus subtilis is the focus of both academic and industrial research. Previous studies have reported a number of sequence variations in different B. subtilis strains. To uncover the genetic variation and evolutionary pressure in B. subtilis strains, we performed whole genome sequencing of two B. subtilis isolates, KM and CGMCC63528. Comparative genomic analyses of these two strains with other B. subtilis strains identified high sequence variations including large insertions, deletions and SNPs. Most SNPs in genes were synonymous and the average frequency of synonymous mutations was significantly higher than that of the non-synonymous mutations. Pan-genome analysis of B. subtilis strains showed that the core genome had lower dN/dS values than the accessory genome. Whole genome comparisons of these two isolates with other B. subtilis strains showed that strains in different subspecies have similar dN/dS values. Nucleotide diversity analysis showed that spizizenii subspecies have higher nucleotide diversity than subtilis subspecies. Our results indicate that genes in B. subtilis strains are under high purifying selection pressure. The evolutionary pressure in different subspecies of B. subtilis is complex.


Subject(s)
Bacillus subtilis/genetics , Evolution, Molecular , Genes, Bacterial , Polymorphism, Single Nucleotide
2.
Open Orthop J ; 2: 137-44, 2008 Oct 24.
Article in English | MEDLINE | ID: mdl-19478889

ABSTRACT

We recently developed a nitrogen-rich plasma-polymerized biomaterial, designated "PPE:N" (N-doped plasma-polymerized ethylene) that is capable of suppressing cellular hypertrophy while promoting type I collagen and aggrecan expression in mesenchymal stem cells from osteoarthritis patients. We then hypothesized that these surfaces would form an ideal substrate on which the nucleus pulposus (NP) phenotype would be maintained. Recent evidence using microarrays showed that in young rats, the relative mRNA levels of glypican-3 (GPC3) and pleiotrophin binding factor (PTN) were significantly higher in nucleus pulposus (NP) compared to annulus fibrosus (AF) and articular cartilage. Furthermore, vimentin (VIM) mRNA levels were higher in NP versus articular cartilage. In contrast, the levels of expression of cartilage oligomeric matrix protein (COMP) and matrix gla protein precursor (MGP) were lower in NP compared to articular cartilage. The objective of this study was to compare the expression profiles of these genes in NP cells from fetal bovine lumbar discs when cultured on either commercial polystyrene (PS) tissue culture dishes or on PPE:N with time. We found that the expression of these genes varies with the concentration of N ([N]). More specifically, the expression of several genes of NP was sensitive to [N], with a decrease of GPC3, VIM, PTN, and MGP in function of decreasing [N]. The expression of aggrecan, collagen type I, and collagen type II was also studied: no significant differences were observed in the cells on different surfaces with different culture time. The results support the concept that PPE:N may be a suitable scaffold for the culture of NP cells. Further studies are however necessary to better understand their effects on cellular phenotypes.

SELECTION OF CITATIONS
SEARCH DETAIL
...