Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Cryst Growth Des ; 23(8): 5446-5461, 2023 Aug 02.
Article in English | MEDLINE | ID: mdl-37547882

ABSTRACT

Sulfasalazine is used as an anti-inflammatory drug to treat large intestine diseases and atrophic arthritis. In the solid state, two tautomers are known: an amide tautomer (triclinic polymorph) and an imide tautomer (monoclinic polymorph). Crystallization of six new multicomponent solids of sulfasalazine with three cocrystal formers and three salt formers has been achieved by slurry, liquid-assisted grinding and slow evaporation methods. All of the solid forms are characterized by X-ray diffraction techniques, thermal analysis, and Fourier transform infrared spectroscopy. The crystal structural analysis reveals that two sulfasalazine molecules or anions arrange in a head-to-head fashion involving their pyridyl, amide, and sulfonyl groups in an R22(7):R22(8):R22(7) motif. This is the key structural unit appearing in both sulfasalazine imide polymorph and all six multicomponent crystals. In addition, sulfasalazine exists in the amide form in all unsolvated multicomponent crystals obtained in this work and adopts the imide tautomer in the solvated cocrystals and salt. Hirshfeld surface analysis and the associated two-dimensional (2D) fingerprint plots demonstrate that sulfasalazine has significant hydrogen bond donor capability when cocrystallized and is a significant hydrogen bond acceptor in the salts. The frontier molecular orbital analysis indicates that sulfasalazine cocrystals are chemically more stable than the salts.

2.
Cryst Growth Des ; 23(4): 2306-2320, 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37038403

ABSTRACT

Pharmaceutical cocrystals, a type of multicomponent crystalline material incorporating two or more molecular and/or ionic compounds connected by noncovalent interactions (such as hydrogen bonds, π-π interactions, and halogen bonds), are attracting increasing attention in crystal engineering. Sulfaguanidine (SGD), one of the most frequently used sulfonamide compounds, was chosen as a model compound in this work to further investigate the hydrogen bond interactions in cocrystals, since it possesses various hydrogen bond donor and acceptor sites. Five cocrystals of SGD, synthesized successfully by slurry and slow evaporation methods, were fully characterized by thermal analysis, X-ray techniques, and Fourier transform infrared spectroscopy. To gain insight into the nature of hydrogen-bonding interactions, theoretical calculations including the analysis of Hirshfeld surface, MEPS (molecular electrostatic potential surface), and QTAIM (quantum theory of atoms in molecules) were conducted. The results are a part of a systematic study of cocrystals of sulfonamides that aims to establish synthon hierarchies in cocrystals containing molecules with multiple hydrogen-bonding functional groups.

3.
Molecules ; 26(13)2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34279382

ABSTRACT

In the study of materials and macromolecules by first-principle methods, the bond order is a useful tool to represent molecules, bulk materials and interfaces in terms of simple chemical concepts. Despite the availability of several methods to compute the bond order, most applications have been limited to small systems because a high spatial resolution of the wave function and an all-electron representation of the electron density are typically required. Both limitations are critical for large-scale atomistic calculations, even within approximate density-functional theory (DFT) approaches. In this work, we describe our methodology to quickly compute delocalization indices for all atomic pairs, while keeping the same representation of the wave function used in most compute-intensive DFT calculations on high-performance computing equipment. We describe our implementation into a post-processing tool, designed to work with Quantum ESPRESSO, a popular open-source DFT package. In this way, we recover a description in terms of covalent bonds from a representation of wave function containing no explicit information about atomic types and positions.

4.
Nat Commun ; 11(1): 1059, 2020 Feb 26.
Article in English | MEDLINE | ID: mdl-32103008

ABSTRACT

Finding heterogeneous catalysts that are superior to homogeneous ones for selective catalytic transformations is a major challenge in catalysis. Here, we show how micropores in metal-organic frameworks (MOFs) push homogeneous catalytic reactions into kinetic regimes inaccessible under standard conditions. Such property allows branched selectivity up to 90% in the Co-catalysed hydroformylation of olefins without directing groups, not achievable with existing catalysts. This finding has a big potential in the production of aldehydes for the fine chemical industry. Monte Carlo and density functional theory simulations combined with kinetic models show that the micropores of MOFs with UMCM-1 and MOF-74 topologies increase the olefins density beyond neat conditions while partially preventing the adsorption of syngas leading to high branched selectivity. The easy experimental protocol and the chemical and structural flexibility of MOFs will attract the interest of the fine chemical industries towards the design of heterogeneous processes with exceptional selectivity.

5.
Chem Sci ; 11(16): 4164-4170, 2020 Mar 20.
Article in English | MEDLINE | ID: mdl-34122879

ABSTRACT

Metal organic frameworks (MOFs) are increasingly used in applications that rely on the optical and electronic properties of these materials. These applications require a fundamental understanding on how the structure of these materials, and in particular the electronic interactions of the metal node and organic linker, determines these properties. Herein, we report a combined experimental and computational study on two families of lanthanide-based MOFs: Ln-SION-1 and Ln-SION-2. Both comprise the same metal and ligand but with differing structural topologies. In the Ln-SION-2 series the optical absorption is dominated by the ligand and using different lanthanides has no impact on the absorption spectrum. The Ln-SION-1 series shows a completely different behavior in which the ligand and the metal node do interact electronically. By changing the lanthanide in Ln-SION-1, we were able to tune the optical absorption from the UV region to absorption that includes a large part of the visible region. For the early lanthanides we observe intraligand (electronic) transitions in the UV region, while for the late lanthanides a new band appears in the visible. DFT calculations showed that the new band in the visible originates in the spatial orbital overlap between the ligand and metal node. Our quantum calculations indicated that Ln-SION-1 with late lanthanides might be (photo)conductive. Experimentally, we confirm that these materials are weakly conductive and that with an appropriate co-catalysts they can generate hydrogen from a water solution using visible light. Our experimental and theoretical analysis provides fundamental insights for the rational design of Ln-MOFs with the desired optical and electronic properties.

6.
ACS Cent Sci ; 4(3): 349-356, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29632880

ABSTRACT

Drinking water contamination with heavy metals, particularly lead, is a persistent problem worldwide with grave public health consequences. Existing purification methods often cannot address this problem quickly and economically. Here we report a cheap, water stable metal-organic framework/polymer composite, Fe-BTC/PDA, that exhibits rapid, selective removal of large quantities of heavy metals, such as Pb2+ and Hg2+, from real world water samples. In this work, Fe-BTC is treated with dopamine, which undergoes a spontaneous polymerization to polydopamine (PDA) within its pores via the Fe3+ open metal sites. The PDA, pinned on the internal MOF surface, gains extrinsic porosity, resulting in a composite that binds up to 1634 mg of Hg2+ and 394 mg of Pb2+ per gram of composite and removes more than 99.8% of these ions from a 1 ppm solution, yielding drinkable levels in seconds. Further, the composite properties are well-maintained in river and seawater samples spiked with only trace amounts of lead, illustrating unprecedented selectivity. Remarkably, no significant uptake of competing metal ions is observed even when interferents, such as Na+, are present at concentrations up to 14 000 times that of Pb2+. The material is further shown to be resistant to fouling when tested in high concentrations of common organic interferents, like humic acid, and is fully regenerable over many cycles.

7.
J Am Chem Soc ; 139(50): 18166-18169, 2017 12 20.
Article in English | MEDLINE | ID: mdl-29198106

ABSTRACT

The influence of metal-organic frameworks (MOFs) as additives is herein described for the reaction of n-alkyl aldehydes in the presence of methylvinylketone and triphenylphosphine. In the absence of a MOF, the expected Morita-Baylis-Hillman product, a ß-hydroxy enone, is observed. In the presence of MOFs with UMCM-1 and MOF-5 topologies, the reaction is selective to Aldol-Tishchenko products, the 1 and 3 n-alkylesters of 2-alkyl-1,3-diols, which is unprecedented in organocatalysis. The (3-oxo-2-butenyl)triphenylphosphonium zwitterion, a commonly known nucleophile, is identified as the catalytic active species. This zwitterion favors nucleophilic character in solution, whereas once confined within the framework, it becomes an electrophile yielding Aldol-Tishchenko selectivity. Computational investigations reveal a structural change in the phosphonium moiety induced by the steric confinement of the framework that makes it accessible and an electrophile.

8.
J Phys Chem C Nanomater Interfaces ; 121(28): 15135-15144, 2017 Jul 20.
Article in English | MEDLINE | ID: mdl-28751926

ABSTRACT

The copper paddle-wheel is the building unit of many metal organic frameworks. Because of the ability of the copper cations to attract polar molecules, copper paddle-wheels are promising for carbon dioxide adsorption and separation. They have therefore been studied extensively, both experimentally and computationally. In this work we investigate the copper-CO2 interaction in HKUST-1 and in two different cluster models of HKUST-1: monocopper Cu(formate)2 and dicopper Cu2(formate)4. We show that density functional theory methods severely underestimate the interaction energy between copper paddle-wheels and CO2, even including corrections for the dispersion forces. In contrast, a multireference wave function followed by perturbation theory to second order using the CASPT2 method correctly describes this interaction. The restricted open-shell Møller-Plesset 2 method (ROS-MP2, equivalent to (2,2) CASPT2) was also found to be adequate in describing the system and used to develop a novel force field. Our parametrization is able to predict the experimental CO2 adsorption isotherms in HKUST-1, and it is shown to be transferable to other copper paddle-wheel systems.

9.
Nat Commun ; 8: 13945, 2017 01 09.
Article in English | MEDLINE | ID: mdl-28067222

ABSTRACT

IRMOF-74 analogues are among the most widely studied metal-organic frameworks (MOFs) for adsorption applications because of their one-dimensional channels and high metal density. Most studies involving the IRMOF-74 series assume that the crystal lattice is rigid. This assumption guides the interpretation of experimental data, as changes in the crystal symmetry have so far been ignored as a possibility in the literature. Here, we report a deformation pattern, induced by the adsorption of argon, for IRMOF-74-V. This work has two main implications. First, we use molecular simulations to demonstrate that the IRMOF-74 series undergoes a deformation that is similar to the mechanism behind breathing MOFs, but is unique because the deformation pattern extends beyond a single unit cell of the original structure. Second, we provide an alternative interpretation of experimental small-angle X-ray scattering profiles of these systems, which changes how we view the fundamentals of adsorption in this MOF series.

10.
Phys Chem Chem Phys ; 19(2): 1551-1559, 2017 Jan 04.
Article in English | MEDLINE | ID: mdl-27990514

ABSTRACT

The use of mixed-linker metal-organic frameworks (MIXMOFs) is one of the most effective strategies to modulate the physical-chemical properties of MOFs without affecting the overall crystal structure. In many instances, MIXMOFs have been recognized as solid solutions, with random distribution of ligands, in agreement with the empirical rule known as Vegard's law. In this work, we have undertaken a study combining high-resolution powder X-ray diffraction (HR-PXRD) and density functional theory (DFT) calculations with the aim of understanding the reasons why UiO-66-based amino- and bromo-functionalized MIXMOFs (MIXUiO-66) undergo cell expansion obeying Vegard's law and how this behaviour is related to their physical-chemical properties. DFT calculations predict that the unit cell in amino-functionalized UiO-66 experiences only minor expansion as a result of steric effects, whereas major modification to the electronic features of the framework leads to weaker metal-linker interaction and consequently to the loss of stability at higher degrees of functionalization. For bromo-functionalized UiO-66, steric repulsion due to the size of bromine yields a large cell expansion, but the electronic features remain very similar to pristine UiO-66, preserving the stability of the framework upon functionalization. MIXUiO-66 obtained by either direct synthesis or by post-synthetic exchange shows Vegard-like behaviour, suggesting that both preparation methods yield solid solutions, but the thermal stability and the textural properties of the post-synthetic exchanged materials do not display a clear dependence on the chemical composition, as observed for the MOFs obtained by direct synthesis.

11.
J Phys Chem C Nanomater Interfaces ; 120(17): 9276-9281, 2016 May 05.
Article in English | MEDLINE | ID: mdl-27610208

ABSTRACT

We report an investigation of the "missing-linker phenomenon" in the Zr-based metal-organic framework UiO-66 using atomistic force field and quantum chemical methods. For a vacant benzene dicarboxylate ligand, the lowest energy charge-capping mechanism involves acetic acid or Cl-/H2O. The calculated defect free energy of formation is remarkably low, consistent with the high defect concentrations reported experimentally. A dynamic structural instability is identified for certain higher defect concentrations. In addition to the changes in material properties upon defect formation, we assess the formation of molecular aggregates, which provide an additional driving force for ligand loss. These results are expected to be of relevance to a wide range of metal-organic frameworks.

12.
Chem Sci ; 7(10): 6574, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-28042462

ABSTRACT

Correction for 'A universal chemical potential for sulfur vapours' by Adam J. Jackson et al., Chem. Sci., 2016, 7, 1082-1092.

13.
Dalton Trans ; 45(10): 4316-26, 2016 Mar 14.
Article in English | MEDLINE | ID: mdl-26660286

ABSTRACT

A new approach is reported for tailoring the pore geometry in five series of multivariate metal­organic frameworks (MOFs) based on the structure [Zn2(bdc)2(dabco)] (bdc = 1,4-benzenedicarboxylate, dabco = 1,8-diazabicyclooctane), DMOF-1. A doping procedure has been adopted to form series of MOFs containing varying linker ratios. The series under investigation are [Zn2(bdc)(2-x)(bdc-Br)x(dabco)]·nDMF 1 (bdc-Br = 2-bromo-1,4-benzenedicarboxylate), [Zn2(bdc)(2-x)(bdc-I)x(dabco)]·nDMF 2 (bdc-I = 2-iodo-1,4-benzenedicarboxylate), [Zn2(bdc)(2-x)(bdc-NO2)x(dabco)]·nDMF 3 (bdc-NO2 = 2-nitro-1,4-benzenedicarboxylate), [Zn2(bdc)(2-x)(bdc-NH2)x(dabco)]·nDMF 4 (bdc-NH2 = 2-amino-1,4-benzenedicarboxylate) and [Zn2(bdc-Br)(2-x)(bdc-I)x(dabco)]·nDMF 5. Series 1-3 demonstrate a functionality-dependent pore geometry transition from the square, open pores of DMOF-1 to rhomboidal, narrow pores with increasing proportion of the 2-substituted bdc linker, with the rhomboidal-pore MOFs also showing a temperature-dependent phase change. In contrast, all members of series 4 and 5 have uniform pore geometries. In series 4 this is a square pore topology, whilst series 5 exhibits the rhomboidal pore form. Computational analyses reveal that the pore size and shape in systems 1 and 2 is altered through non-covalent interactions between the organic linkers within the framework, and that this can be controlled by the ligand functionality and ratio. This approach affords the potential to tailor pore geometry and shape within MOFs through judicious choice of ligand ratios.

14.
Chem Sci ; 7(2): 1082-1092, 2016 Feb 01.
Article in English | MEDLINE | ID: mdl-29896372

ABSTRACT

The unusual chemistry of sulfur is illustrated by the tendency for catenation. Sulfur forms a range of open and closed S n species in the gas phase, which has led to speculation on the composition of sulfur vapours as a function of temperature and pressure for over a century. Unlike elemental gases such as O2 and N2, there is no widely accepted thermodynamic potential for sulfur. Here we combine a first-principles global structure search for the low energy clusters from S2 to S8 with a thermodynamic model for the mixed-allotrope system, including the Gibbs free energy for all gas-phase sulfur on an atomic basis. A strongly pressure-dependent transition from a mixture dominant in S2 to S8 is identified. A universal chemical potential function, µS(T,P), is proposed with wide utility in modelling sulfurisation processes including the formation and annealing of metal chalcogenide semiconductors.

15.
J Chem Phys ; 143(6): 064710, 2015 Aug 14.
Article in English | MEDLINE | ID: mdl-26277159

ABSTRACT

We perform a systematic comparison of the finite-temperature structure and properties of four bulk semiconductors (PbS, PbTe, ZnS, and ZnTe) predicted by eight popular exchange-correlation functionals from quasi-harmonic lattice-dynamics calculations. The performance of the functionals in reproducing the temperature dependence of a number of material properties, including lattice parameters, thermal-expansion coefficients, bulk moduli, heat capacities, and phonon frequencies, is evaluated quantitatively against available experimental data. We find that the phenomenological over- and under-binding characteristics of the local-density approximation and the PW91 and Perdew-Burke-Enzerhof (PBE) generalised-gradient approximation (GGA) functionals, respectively, are exaggerated at finite temperature, whereas the PBEsol GGA shows good general performance across all four systems. The Tao-Perdew-Staroverov-Scuseria (TPSS) and revTPSS meta-GGAs provide relatively small improvements over PBE, with the latter being better suited to calculating structural and dynamical properties, but both are considerably more computationally demanding than the simpler GGAs. The dispersion-corrected PBE-D2 and PBE-D3 functionals perform well in describing the lattice dynamics of the zinc chalcogenides, whereas the lead chalcogenides appear to be challenging for these functionals. These findings show that quasi-harmonic calculations with a suitable functional can predict finite-temperature structure and properties with useful accuracy, and that this technique can serve as a means of evaluating the performance of new functionals in the future.

16.
J Phys Chem A ; 119(10): 2153-60, 2015 Mar 12.
Article in English | MEDLINE | ID: mdl-25662566

ABSTRACT

The metal-metal interaction in policarbonyl metal clusters remains one of the most challenging and controversial issues in metal-organic chemistry, being at heart of a generalized understanding of chemical bonding and of specific applications of these molecules. In this work, the interacting quantum atoms (IQA) approach is used to study the metal-metal interaction in dimetal polycarbonyl dimers, analyzing bridged (Co2(CO)8)), semibridged ([FeCo(CO)8](-)) and unbridged (Co2(CO)8, [Fe2(CO)8](2-)) clusters. In all systems, a delocalized covalent bond is found to occur, involving the metals and the carbonyls, but the global stability of the dimers mainly originates from the Coulombic attraction between the metals and the oxygens.

17.
Dalton Trans ; 44(9): 4259-70, 2015 Mar 07.
Article in English | MEDLINE | ID: mdl-25630667

ABSTRACT

We present a first principles static and dynamical study of the transition metal hydride series MH4L3 (M = Fe, Ru and Os; L = NH3, PH3 and PF3), with a view to arriving at an understanding of how the variation in the electronic properties of the metal sites and ligands can influence the dynamics of the resulting complexes. A broad range of behaviour was observed, encompassing stable classical minima (M = Os, L = NH3 and M = Ru, L = PH3) to stable η(2)-H2 non-classical minima (M = Fe, L = PF3 and M = Ru, L = PH3 or PF3), with the other structures exhibiting dynamical behaviour that spontaneously converted between the classical and non-classical states during the molecular dynamics simulations. The importance of a small L(axial)-M-L(axial) angle in stabilising the non-classical state is highlighted, as is a short η(2)-H2···H(cis) distance in non-classical complexes that spontaneously convert to the classical form. We also investigated the changes in the electronic structure of the complex FeH4(PH3)3 during a η(2)-H2 bond breaking/bond making reaction and observed direct evidence of the 'cis effect', whereby a neighbouring hydride ligand acts to stabilise the intermediate classical state.

18.
Chemistry ; 20(51): 16933-42, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25331304

ABSTRACT

A systematic investigation into the relationship between the solid-state luminescence and the intermolecular Au⋅⋅⋅Au interactions in a series of pyrazolate-based gold(I) trimers; tris(µ2 -pyrazolato-N,N')-tri-gold(I) (1), tris(µ2 -3,4,5- trimethylpyrazolato-N,N')-tri-gold(I) (2), tris(µ2 -3-methyl-5-phenylpyrazolato-N,N')-tri-gold(I) (3) and tris(µ2 -3,5-diphenylpyrazolato-N,N')-tri-gold(I) (4) has been carried out using variable temperature and high pressure X-ray crystallography, solid-state emission spectroscopy, Raman spectroscopy and computational techniques. Single-crystal X-ray studies show that there is a significant reduction in the intertrimer Au⋅⋅⋅Au distances both with decreasing temperature and increasing pressure. In the four complexes, the reduction in temperature from 293 to 100 K is accompanied by a reduction in the shortest intermolecular Au⋅⋅⋅Au contacts of between 0.04 and 0.08 Å. The solid-state luminescent emission spectra of 1 and 2 display a red shift with decreasing temperature or increasing pressure. Compound 3 does not emit under ambient conditions but displays increasingly red-shifted luminescence upon cooling or compression. Compound 4 remains emissionless, consistent with the absence of intermolecular Au⋅⋅⋅Au interactions. The largest pressure induced shift in emission is observed in 2 with a red shift of approximately 630 cm(-1) per GPa between ambient and 3.80 GPa. The shifts in all the complexes can be correlated with changes in Au⋅⋅⋅Au distance observed by diffraction.

19.
Chem Commun (Camb) ; 50(90): 13990-3, 2014 Nov 21.
Article in English | MEDLINE | ID: mdl-25266671

ABSTRACT

We report a class of ligands that are candidates to construct metal-organic frameworks with long-range magnetic order between transition metal centres. Direct quantum chemical calculations predict Néel temperatures exceeding 100 K for the case of Mn.

20.
Chem Commun (Camb) ; 50(85): 12824-7, 2014 Nov 04.
Article in English | MEDLINE | ID: mdl-25000140

ABSTRACT

At variance with what was previously reported, Mn2(CO)10 does not transform its conformation from staggered to eclipsed in the high pressure crystal form. X-ray powder diffraction, DFT calculations and Raman spectroscopy show that the staggered conformation is retained. Instead, a rotation and a translation of the Mn(CO)5 pyramidal units produce an "off-axis" and rather shorter Mn-Mn bond.

SELECTION OF CITATIONS
SEARCH DETAIL
...