Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 9(12): 10497-10509, 2018 Feb 13.
Article in English | MEDLINE | ID: mdl-29535822

ABSTRACT

BACKGROUND: Despite the availability of hundreds of cancer drugs, there is insufficient data on the efficacy of these drugs on the extremely heterogeneous tumor cell populations of glioblastoma (GBM). RESULTS: The PKIS of 357 compounds was initially evaluated in 15 different GSC lines which then led to a more focused screening of the 21 most highly active compounds in 11 unique GSC lines using HTS screening for cell viability. We further validated the HTS result with the second-generation PLK1 inhibitor volasertib as a single agent and in combination with ionizing radiation (IR). In vitro studies showed that volasertib inhibited cell viability, and high levels of the anti-apoptotic protein Bcl-xL expression were highly correlated with volasertib resistance. Volasertib sensitized GSCs to radiation therapy by enhancing G2/M arrest and by inducing apoptosis. Colony-formation assay demonstrated that volasertib plus IR synergistically inhibited colony formation. In intracranial xenograft mouse models, the combination of volasertib and radiation significantly inhibited GSC tumor growth and prolonged median survival compared with radiation treatment alone due to inhibition of cell proliferation, enhancement of DNA damage, and induction of apoptosis. CONCLUSIONS: Our results reinforce the potential therapeutic efficacy of volasertib in combination with radiation for the treatment of GBM. METHODS: We used high-throughput screening (HTS) to identify drugs, out of 357 compounds in the published Protein Kinase Inhibitor Set, with the greatest efficacy against a panel of glioma stem cells (GSCs), which are representative of the classic cancer genome atlas (TCGA) molecular subtypes.

2.
Oncotarget ; 8(57): 96970-96983, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29228586

ABSTRACT

Intercellular cell adhesion molecule 1 (ICAM-1; also known as CD54) is overexpressed in bevacizumab-resistant glioblastoma. In the present study, we tested our hypothesis that highly expressed ICAM-1 mediates glioblastoma's resistance to antiangiogenic therapy. We validated ICAM-1 overexpression in tumors resistant to antiangiogenic therapy using real-time polymerase chain reaction, immunohistochemistry, and Western blotting. We also detected ICAM1 expression in most glioma stem cells (GSCs). We investigated the mechanism of ICAM-1 overexpression after bevacizumab treatment and found that ICAM-1 protein expression was markedly increased in a time-dependent manner in GSC11 and GSC17 cells under hypoxic conditions in vitro. We also found that hypoxia induced ICAM-1 overexpression through the up-regulation of phosphorylated signal transducer and activator of transcription (p-STAT3). Hypoxia-induced p-STAT3 increased the mRNA transcription of ICAM-1, which we could inhibit with the STAT3 inhibitor AZD1480. Next, we used GFP-tagged ICAM-1 shRNA lentivirus to knock down ICAM-1 in GSC11 and GSC17 glioma cell lines. Then, we injected shICAM-1 GSC11 and scramble glioma stem cells into the brains of nude mice. Mice bearing tumors from shICAM-1 GSC11 cells survived significantly longer than mice injected with control cells did. The tumor sizes was significantly decreased in mice bearing tumors from shICAM-1 cells than that in mice bearing tumors from GFP-tagged GSC11 control cells. Knocking down ICAM-1 suppressed tumor invasion in vitro and in vivo and inhibited macrophage infiltration to the tumor site in bevacizumab-treated mice. Our findings suggest that ICAM-1 is a potentially important mediator of tumor migration and invasion in bevacizumab-resistant glioblastoma. Targeting ICAM-1 may provide a new strategy for enhancing the efficacy of antiangiogenic therapy against glioblastoma and preventing the invasive phenotype of the disease.

3.
Neuro Oncol ; 18(9): 1230-41, 2016 09.
Article in English | MEDLINE | ID: mdl-26965451

ABSTRACT

BACKGROUND: Glioblastoma highly expresses the proto-oncogene MET in the setting of resistance to bevacizumab. MET engagement by hepatocyte growth factor (HGF) results in receptor dimerization and autophosphorylation mediating tumor growth, invasion, and metastasis. Evasive revascularization and the recruitment of TIE2-expressing macrophages (TEMs) are also triggered by anti-VEGF therapy. METHODS: We investigated the activity of altiratinib (a novel balanced inhibitor of MET/TIE2/VEGFR2) against human glioblastoma stem cell lines in vitro and in vivo using xenograft mouse models. The biological activity of altiratinib was assessed in vitro by testing the expression of HGF-stimulated MET phosphorylation as well as cell viability after altiratinib treatment. Tumor volume, stem cell and mesenchymal marker levels, microvessel density, and TIE2-expressing monocyte infiltration were evaluated in vivo following treatment with a control, bevacizumab alone, bevacizumab combined with altiratinib, or altiratinib alone. RESULTS: In vitro, HGF-stimulated MET phosphorylation was completely suppressed by altiratinib in GSC17 and GSC267, and altiratinib markedly inhibited cell viability in several glioblastoma stem cell lines. More importantly, in multiple xenograft mouse models, altiratinib combined with bevacizumab dramatically reduced tumor volume, invasiveness, mesenchymal marker expression, microvessel density, and TIE2-expressing monocyte infiltration compared with bevacizumab alone. Furthermore, in the GSC17 xenograft model, altiratinib combined with bevacizumab significantly prolonged survival compared with bevacizumab alone. CONCLUSIONS: Together, these data suggest that altiratinib may suppress tumor growth, invasiveness, angiogenesis, and myeloid cell infiltration in glioblastoma. Thus, altiratinib administered alone or in combination with bevacizumab may overcome resistance to bevacizumab and prolong survival in patients with glioblastoma.


Subject(s)
Brain Neoplasms/drug therapy , Drug Resistance, Neoplasm/drug effects , Glioblastoma/drug therapy , Protein Kinase Inhibitors/therapeutic use , Animals , Antineoplastic Agents/therapeutic use , Apoptosis/drug effects , Bevacizumab/pharmacology , Brain Neoplasms/metabolism , Brain Neoplasms/pathology , Cell Proliferation/drug effects , Female , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Mice , Mice, Nude , Neoplasm Invasiveness , Neovascularization, Pathologic/drug therapy , Proto-Oncogene Mas , Proto-Oncogene Proteins c-met/antagonists & inhibitors , Receptor, TIE-2/antagonists & inhibitors , Tumor Cells, Cultured , Vascular Endothelial Growth Factor Receptor-2/antagonists & inhibitors , Xenograft Model Antitumor Assays
4.
Oncotarget ; 6(31): 31479-92, 2015 Oct 13.
Article in English | MEDLINE | ID: mdl-26362401

ABSTRACT

PURPOSE: Antiangiogenic therapy is commonly being used for the treatment of glioblastoma. However, the benefits of angiogenesis inhibitors are typically transient and resistance often develops. Determining the mechanism of treatment failure of the VEGF monoclonal antibody bevacizumab for malignant glioma would provide insight into approaches to overcome therapeutic resistance. EXPERIMENTAL DESIGN: In this study, we evaluated the effects of bevacizumab on the autophagy of glioma cells and determined target genes involving in the regulation of bevacizumab-induced autophagy. RESULTS: We demonstrated that bevacizumab treatment increased expression of autophagy markers and autophagosome formation in cell culture experiments as well as in in vivo studies. Gene expression profile analysis performed on murine xenograft models of glioblastoma showed increased transcriptional levels of STAT1/IRF1 signaling in bevacizumab resistant tumors compared to control tumors. In vitro experiments showed that bevacizumab treatment increased IRF1 expression in a dose and time dependent manner, which was coincident with bevacizumab-mediated autophagy. Down regulation of IRF1 by shRNA blocked autophagy and increased AIF-dependent apoptosis in bevacizumab-treated glioma cells. Consistently, IRF1 depletion increased the efficacy of anti-VEGF therapy in a glioma xenograft model, which was due to less bevacizumab-promoted autophagy and increased apoptosis in tumors with down-regulated IRF1. CONCLUSIONS: These data suggest that IRF1 may regulate bevacizumab-induced autophagy, and may be one important mediator of glioblastoma resistant to bevacizumab.


Subject(s)
Angiogenesis Inhibitors/pharmacology , Autophagy/drug effects , Bevacizumab/pharmacology , Brain Neoplasms/pathology , Glioblastoma/pathology , Interferon Regulatory Factor-1/metabolism , Animals , Apoptosis/drug effects , Blotting, Western , Brain Neoplasms/drug therapy , Brain Neoplasms/metabolism , Cell Proliferation/drug effects , Fluorescent Antibody Technique , Glioblastoma/drug therapy , Glioblastoma/metabolism , Humans , Immunoenzyme Techniques , Interferon Regulatory Factor-1/genetics , Mice , Mice, Nude , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Tumor Cells, Cultured , Xenograft Model Antitumor Assays
5.
Clin Cancer Res ; 20(1): 187-98, 2014 Jan 01.
Article in English | MEDLINE | ID: mdl-24240114

ABSTRACT

PURPOSE: Antiangiogenic therapy is effective in blocking vascular permeability, inhibiting vascular proliferation, and slowing tumor growth, but studies in multiple cancer types have shown that tumors eventually acquire resistance to blockade of blood vessel growth. Currently, the mechanisms by which this resistance occurs are not well understood. EXPERIMENTAL DESIGN: In this study, we evaluated the effects of neutrophils on glioma biology both in vitro and in vivo and determined target genes by which neutrophils promote the malignant glioma phenotype during anti-VEGF therapy. RESULTS: We found that an increase in neutrophil infiltration into tumors is significantly correlated with glioma grade and in glioblastoma with acquired resistance to anti-VEGF therapy. Our data demonstrate that neutrophils and their condition media increased the proliferation rate of glioblastoma-initiating cells (GIC). In addition, neutrophils significantly increased GICs Transwell migration compared with controls. Consistent with this behavior, coculture with neutrophils promoted GICs to adopt morphologic and gene expression changes consistent with a mesenchymal signature. Neutrophil-promoting tumor progression could be blocked by S100A4 downregulation in vitro and in vivo. Furthermore, S100A4 depletion increased the effectiveness of anti-VEGF therapy in glioma. CONCLUSIONS: Collectively, these data suggest that increased recruitment of neutrophils during anti-VEGF therapy promotes glioma progression and may promote treatment resistance. Tumor progression with mesenchymal characteristics is partly mediated by S100A4, the expression of which is increased by neutrophil infiltration. Targeting granulocytes and S100A4 may be effective approaches to inhibit the glioma malignant phenotype and diminish antiangiogenic therapy resistance.


Subject(s)
Brain Neoplasms/metabolism , Glioblastoma/metabolism , S100 Proteins/physiology , Angiogenesis Inhibitors/pharmacology , Animals , Antibodies, Monoclonal, Humanized/pharmacology , Bevacizumab , Brain Neoplasms/drug therapy , Brain Neoplasms/immunology , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm , Female , Glioblastoma/drug therapy , Glioblastoma/immunology , Glioblastoma/pathology , Humans , Mice , Mice, Nude , Neoplasm Grading , Neutrophil Infiltration , Phenotype , S100 Calcium-Binding Protein A4 , Tissue Array Analysis , Vascular Endothelial Growth Factor A/antagonists & inhibitors , Xenograft Model Antitumor Assays
6.
Clin Cancer Res ; 18(1): 184-95, 2012 Jan 01.
Article in English | MEDLINE | ID: mdl-22065080

ABSTRACT

PURPOSE: The aim of this study was to show preclinical efficacy and clinical development potential of NVP-BKM120, a selective pan class I phosphatidylinositol-3 kinase (PI3K) inhibitor in human glioblastoma (GBM) cells in vitro and in vivo. EXPERIMENTAL DESIGN: The effect of NVP-BKM120 on cellular growth was assessed by CellTiter-Blue assay. Flow cytometric analyses were carried out to measure the cell-cycle, apoptosis, and mitotic index. Mitotic catastrophe was detected by immunofluorescence. The efficacy of NVP-BKM120 was tested using intracranial U87 glioma model. RESULTS: We tested the biologic effects of a selective PI3K inhibitor NVP-BKM120 in a set of glioma cell lines. NVP-BKM120 treatment for 72 hours resulted in a dose-dependent growth inhibition and effectively blocked the PI3K/Akt signaling cascade. Although we found no obvious relationship between the cell line's sensitivity to NVP-BKM120 and the phosphatase and tensin homolog (PTEN) and epidermal growth factor receptor (EGFR) statuses, we did observe a differential sensitivity pattern with respect to p53 status, with glioma cells containing wild-type p53 more sensitive than cells with mutated or deleted p53. NVP-BKM120 showed differential forms of cell death on the basis of p53 status of the cells with p53 wild-type cells undergoing apoptotic cell death and p53 mutant/deleted cells having a mitotic catastrophe cell death. NVP-BKM120 mediates mitotic catastrophe mainly through Aurora B kinase. Knockdown of p53 in p53 wild-type U87 glioma cells displayed microtubule misalignment, multiple centrosomes, and mitotic catastrophe cell death. Parallel to the assessment of the compound in in vitro settings, in vivo efficacy studies using an intracranial U87 tumor model showed an increased median survival from 26 days (control cohort) to 38 and 48 days (treated cohorts). CONCLUSION: Our present findings establish that NVP-BKM120 inhibits the PI3K signaling pathways, leading to different forms of cell death on the basis of p53 statuses. Further studies are warranted to determine if NVP-BKM120 has potential as a glioma treatment.


Subject(s)
Aminopyridines/pharmacology , Apoptosis/drug effects , Enzyme Inhibitors/pharmacology , Glioma/drug therapy , Glioma/pathology , Morpholines/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Tumor Suppressor Protein p53/metabolism , Animals , Blotting, Western , Brain Neoplasms/drug therapy , Brain Neoplasms/enzymology , Brain Neoplasms/pathology , Cell Cycle/drug effects , Cell Proliferation/drug effects , Enzyme Inhibitors/pharmacokinetics , Fluorescent Antibody Technique , Glioma/enzymology , Humans , Immunoenzyme Techniques , Mice , Mice, Nude , Phosphatidylinositol 3-Kinases/metabolism , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Tissue Distribution , Tumor Cells, Cultured , Tumor Suppressor Protein p53/genetics
7.
Neuro Oncol ; 13(7): 748-58, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21653596

ABSTRACT

The development of new therapies for ependymoma is dramatically limited by the absence of optimal in vivo and in vitro models. Successful ependymoma treatment requires a profound understanding of the disease's biological characteristics. This study focuses on the establishment and characterization of in vivo and in vitro models of ependymoma to study the molecular pathways necessary for growth and progression in ependymoma. In addition, this study also emphasizes the use of these models for therapeutic intervention of ependymomas. We established optimal conditions for the long-term growth of 2 tumor xenografts and cultures of 2 human ependymoma cell lines. This study also describes the establishment of in vivo models. Histopathologic features of tumors from both intracranial and subcutaneous sites in mice revealed perivascular pseudorosettes and ependymal rosettes, which are typical morphologic features of ependymoma similar to those observed in human specimens. The in vitro models revealed glial fibrillary acidic protein and vimentin expression, and ultrastructural studies demonstrated numerous microvilli, caveolae, and microfilaments commonly seen in human ependymoma. To study signaling pathway alterations in ependymoma, we profiled established ependymoma models with Western blot analysis that demonstrated aberrant activation mainly of the phosphoinositide 3-kinase and epidermal growth factor receptor signaling pathways. Targeting phosphoinositide 3-kinase and epidermal growth factor receptor signaling pathways with small molecule inhibitors showed growth inhibitory effects. These models can also be used to study the standard therapies used for ependymomas, as shown by some of the drugs used in this study. Therefore, the models developed will assist in the biological studies and preclinical drug screening for ependymomas.


Subject(s)
Brain Neoplasms/drug therapy , Disease Models, Animal , Ependymoma/drug therapy , Signal Transduction , Animals , Blotting, Western , Brain Neoplasms/metabolism , Cell Line, Tumor , Cell Proliferation , Child, Preschool , Ependymoma/metabolism , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Female , Fluorescent Antibody Technique , Humans , Immunoenzyme Techniques , Infant , Male , Mice , Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors
8.
Neuro Oncol ; 13(4): 367-75, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21430111

ABSTRACT

Several small molecules that inhibit the PI3 kinase (PI3K)-Akt signaling pathway are in clinical development. Although many of these molecules have been effective in preclinical models, it remains unclear whether this strategy alone will be sufficient to interrupt the molecular events initiated and maintained by signaling along the pathways because of the activation of other pathways that compensate for the inhibition of the targeted kinase. In this study, we performed a synthetic lethality screen to identify genes or pathways whose inactivation, in combination with the PI3K inhibitors PX-866 and NVPBEZ-235, might result in a lethal phenotype in glioblastoma multiforme (GBM) cells. We screened GBM cells (U87, U251, and T98G) with a large-scale, short hairpin RNA library (GeneNet), which contains 43 800 small interfering RNA sequences targeting 8500 well-characterized human genes. To decrease off-target effects, we selected overlapping genes among the 3 cell lines that synergized with PX-866 to induce cell death. To facilitate the identification of potential targets, we used a GSE4290 dataset and The Cancer Genome Atlas GBM dataset, identifying 15 target genes overexpressed in GBM tissues. We further analyzed the selected genes using Ingenuity Pathway Analysis software and showed that the 15 genes were closely related to cancer-promoting pathways, and a highly interconnected network of aberrations along the MYC, P38MAPK, and ERK signaling pathways were identified. Our findings suggest that inhibition of these pathways might increase tumor sensitivity to PX-866 and therefore represent a potential clinical therapeutic strategy.


Subject(s)
Cell Proliferation/drug effects , Genes, Lethal , Glioblastoma/drug therapy , Glioblastoma/genetics , Gonanes/pharmacology , Phosphoinositide-3 Kinase Inhibitors , RNA, Small Interfering/genetics , Brain Neoplasms/drug therapy , Brain Neoplasms/genetics , Cell Line, Tumor , Drug Combinations , Drug Design , Drug Synergism , Humans , Signal Transduction
9.
Mol Cancer Ther ; 8(8): 2204-10, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19671762

ABSTRACT

Aberrant genetic alternations in human gliomas, such as amplification of epidermal growth factor receptor, mutation and/or deletion of tumor suppressor gene PTEN, and mutations of PIK3CA, contribute to constitutive activation of the phosphatidylinositol 3-kinase (PI3K) pathway. We investigated the potential antitumor activity of NVP-BEZ235, which is a novel dual PI3K/mammalian target of rapamycin (mTOR) inhibitor in gliomas. The compound suppressed glioma cell proliferation with IC(50) values in the low nanomolar range by specifically inhibiting the activity of target proteins including Akt, S6K1, S6, and 4EBP1 in the PI3K/Akt/mTOR signaling pathway. NVP-BEZ235 treatment of glioma cell lines led to G(1) cell cycle arrest and induced autophagy. Furthermore, expression of the vascular endothelial growth factor (VEGF), which is an important angiogenic modulator in glioma cells, was significantly decreased, suggesting that NVP-BEZ235 may also exert an antiangiogenic effect. Preclinical testing of the therapeutic efficacy of NVP-BEZ235 showed that it significantly prolonged the survival of tumor-bearing animals without causing any obvious toxicity. Tumor extracts harvested from animals after treatment showed that the compound inhibited the activity of target proteins in the PI3K/Akt/mTOR cascade. Immunohistochemical analyses also showed a significant reduction in staining for VEGF von Willebrand factor (factor VIII) in NVP-BEZ235-treated tumor sections compared with controls, further confirming that NVP-BEZ235 has an antiangiogenic effect in vivo. We conclude from these findings that NVP-BEZ235 antagonizes PI3K and mTOR signaling and induces cell cycle arrest, down-regulation of VEGF, and autophagy. These results warrant further development of NVP-BEZ235 for clinical trials for human gliomas or other advanced cancers with altered PI3K/Akt/mTOR signaling.


Subject(s)
Enzyme Inhibitors/pharmacology , Glioma/drug therapy , Glioma/enzymology , Imidazoles/pharmacology , Phosphoinositide-3 Kinase Inhibitors , Protein Kinase Inhibitors/pharmacology , Quinolines/pharmacology , Cell Cycle , Cell Line, Tumor , Down-Regulation , Humans , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinases/metabolism , TOR Serine-Threonine Kinases
SELECTION OF CITATIONS
SEARCH DETAIL
...