Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Elife ; 122023 04 11.
Article in English | MEDLINE | ID: mdl-37039476

ABSTRACT

Mutations in the ubiquitin (Ub) chaperone Ubiquilin 2 (UBQLN2) cause X-linked forms of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) through unknown mechanisms. Here, we show that aggregation-prone, ALS-associated mutants of UBQLN2 (UBQLN2ALS) trigger heat stress-dependent neurodegeneration in Drosophila. A genetic modifier screen implicated endolysosomal and axon guidance genes, including the netrin receptor, Unc-5, as key modulators of UBQLN2 toxicity. Reduced gene dosage of Unc-5 or its coreceptor Dcc/frazzled diminished neurodegenerative phenotypes, including motor dysfunction, neuromuscular junction defects, and shortened lifespan, in flies expressing UBQLN2ALS alleles. Induced pluripotent stem cells (iPSCs) harboring UBQLN2ALS knockin mutations exhibited lysosomal defects while inducible motor neurons (iMNs) expressing UBQLN2ALS alleles exhibited cytosolic UBQLN2 inclusions, reduced neurite complexity, and growth cone defects that were partially reversed by silencing of UNC5B and DCC. The combined findings suggest that altered growth cone dynamics are a conserved pathomechanism in UBQLN2-associated ALS/FTD.


Subject(s)
Amyotrophic Lateral Sclerosis , Frontotemporal Dementia , Humans , Amyotrophic Lateral Sclerosis/genetics , Frontotemporal Dementia/genetics , Axon Guidance , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Autophagy-Related Proteins/genetics , Autophagy-Related Proteins/metabolism , Mutation , Transcription Factors/genetics , Ubiquitins/metabolism , Netrin Receptors/genetics
2.
J Biol Chem ; 297(3): 101049, 2021 09.
Article in English | MEDLINE | ID: mdl-34375640

ABSTRACT

Fused in sarcoma (FUS) encodes an RNA-binding protein with diverse roles in transcriptional activation and RNA splicing. While oncogenic fusions of FUS and transcription factor DNA-binding domains are associated with soft tissue sarcomas, dominant mutations in FUS can cause amyotrophic lateral sclerosis. FUS has also been implicated in genome maintenance. However, the underlying mechanisms of its actions in genome stability are unknown. Here, we applied gene editing, functional reconstitution, and integrated proteomics and transcriptomics to illuminate roles for FUS in DNA replication and repair. Consistent with a supportive role in DNA double-strand break repair, FUS-deficient cells exhibited subtle alterations in the recruitment and retention of double-strand break-associated factors, including 53BP1 and BRCA1. FUS-/- cells also exhibited reduced proliferative potential that correlated with reduced speed of replication fork progression, diminished loading of prereplication complexes, enhanced micronucleus formation, and attenuated expression and splicing of S-phase-associated genes. Finally, FUS-deficient cells exhibited genome-wide alterations in DNA replication timing that were reversed upon re-expression of FUS complementary DNA. We also showed that FUS-dependent replication domains were enriched in transcriptionally active chromatin and that FUS was required for the timely replication of transcriptionally active DNA. These findings suggest that alterations in DNA replication kinetics and programming contribute to genome instability and functional defects in FUS-deficient cells.


Subject(s)
DNA Replication Timing , RNA-Binding Protein FUS/metabolism , Sarcoma/genetics , Sarcoma/metabolism , BRCA1 Protein/genetics , BRCA1 Protein/metabolism , Cell Proliferation , DNA Breaks, Double-Stranded , DNA Repair , Humans , Kinetics , RNA-Binding Protein FUS/genetics , Tumor Suppressor p53-Binding Protein 1/genetics , Tumor Suppressor p53-Binding Protein 1/metabolism
3.
J Biol Chem ; 297(1): 100908, 2021 07.
Article in English | MEDLINE | ID: mdl-34171357

ABSTRACT

The cAMP response element-binding protein (CREB) is an important regulator of cell growth, metabolism, and synaptic plasticity. CREB is activated through phosphorylation of an evolutionarily conserved Ser residue (S133) within its intrinsically disordered kinase-inducible domain (KID). Phosphorylation of S133 in response to cAMP, Ca2+, and other stimuli triggers an association of the KID with the KID-interacting (KIX) domain of the CREB-binding protein (CBP), a histone acetyl transferase (HAT) that promotes transcriptional activation. Here we addressed the mechanisms of CREB attenuation following bursts in CREB phosphorylation. We show that phosphorylation of S133 is reversed by protein phosphatase 2A (PP2A), which is recruited to CREB through its B56 regulatory subunits. We found that a B56-binding site located at the carboxyl-terminal boundary of the KID (BS2) mediates high-affinity B56 binding, while a second binding site (BS1) located near the amino terminus of the KID mediates low affinity binding enhanced by phosphorylation of adjacent casein kinase (CK) phosphosites. Mutations that diminished B56 binding to BS2 elevated both basal and stimulus-induced phosphorylation of S133, increased CBP interaction with CREB, and potentiated the expression of CREB-dependent reporter genes. Cells from mice harboring a homozygous CrebE153D mutation that disrupts BS2 exhibited increased S133 phosphorylation stoichiometry and elevated transcriptional bursts to cAMP. These findings provide insights into substrate targeting by PP2A holoenzymes and establish a new mechanism of CREB attenuation that has implications for understanding CREB signaling in cell growth, metabolism, synaptic plasticity, and other physiologic contexts.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , Cyclic AMP/metabolism , Protein Phosphatase 2/chemistry , Animals , Binding Sites , Cells, Cultured , HeLa Cells , Humans , Mice , Phosphorylation , Protein Binding , Protein Phosphatase 2/metabolism , Signal Transduction , Transcriptional Activation
4.
Hum Mol Genet ; 27(2): 322-337, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29161404

ABSTRACT

Members of the conserved ubiquilin (UBQLN) family of ubiquitin (Ub) chaperones harbor an antipodal UBL (Ub-like)-UBA (Ub-associated) domain arrangement and participate in proteasome and autophagosome-mediated protein degradation. Mutations in a proline-rich-repeat region (PRR) of UBQLN2 cause amyotrophic lateral sclerosis (ALS)/frontotemporal dementia (FTD); however, neither the normal functions of the PRR nor impacts of ALS-associated mutations within it are well understood. In this study, we show that ALS mutations perturb UBQLN2 solubility and folding in a mutation-specific manner. Biochemical impacts of ALS mutations were additive, transferable to UBQLN1, and resulted in enhanced Ub association. A Drosophila melanogaster model for UBQLN2-associated ALS revealed that both wild-type and ALS-mutant UBQLN2 alleles disrupted Ub homeostasis; however, UBQLN2ALS mutants exhibited age-dependent aggregation and caused toxicity phenotypes beyond those seen for wild-type UBQLN2. Although UBQLN2 toxicity was not correlated with aggregation in the compound eye, aggregation-prone UBQLN2 mutants elicited climbing defects and neuromuscular junctions (NMJ) abnormalities when expressed in neurons. An UBA domain mutation that abolished Ub binding also diminished UBQLN2 toxicity, implicating Ub binding in the underlying pathomechanism. We propose that ALS-associated mutations in UBQLN2 disrupt folding and that both aggregated species and soluble oligomers instigate neuron autonomous toxicity through interference with Ub homeostasis.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Carrier Proteins/genetics , Cell Cycle Proteins/genetics , Mutation , Ubiquitins/genetics , Adaptor Proteins, Signal Transducing , Amino Acid Sequence , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Autophagy-Related Proteins , Carrier Proteins/metabolism , Cell Cycle Proteins/metabolism , DNA-Binding Proteins/genetics , Disease Models, Animal , Drosophila Proteins , Drosophila melanogaster , Frontotemporal Dementia/genetics , Gene Frequency , Genes, Regulator , HEK293 Cells , Humans , Inclusion Bodies/metabolism , Neurons/metabolism , Neurons/pathology , Proteasome Endopeptidase Complex/metabolism , Proteolysis , Ubiquitins/metabolism
5.
Nucleic Acids Res ; 44(20): 9667-9680, 2016 Nov 16.
Article in English | MEDLINE | ID: mdl-27431323

ABSTRACT

cAMP response element binding protein (CREB) is a key regulator of glucose metabolism and synaptic plasticity that is canonically regulated through recruitment of transcriptional coactivators. Here we show that phosphorylation of CREB on a conserved cluster of Ser residues (the ATM/CK cluster) by the DNA damage-activated protein kinase ataxia-telangiectasia-mutated (ATM) and casein kinase1 (CK1) and casein kinase2 (CK2) positively and negatively regulates CREB-mediated transcription in a signal dependent manner. In response to genotoxic stress, phosphorylation of the ATM/CK cluster inhibited CREB-mediated gene expression, DNA binding activity and chromatin occupancy proportional to the number of modified Ser residues. Paradoxically, substoichiometric, ATM-independent, phosphorylation of the ATM/CK cluster potentiated bursts in CREB-mediated transcription by promoting recruitment of the CREB coactivator, cAMP-regulated transcriptional coactivators (CRTC2). Livers from mice expressing a non-phosphorylatable CREB allele failed to attenuate gluconeogenic genes in response to DNA damage or fully activate the same genes in response to glucagon. We propose that phosphorylation-dependent regulation of DNA binding activity evolved as a tunable mechanism to control CREB transcriptional output and promote metabolic homeostasis in response to rapidly changing environmental conditions.


Subject(s)
Cyclic AMP Response Element-Binding Protein/metabolism , DNA Damage , DNA/genetics , DNA/metabolism , Energy Metabolism/genetics , Gene Expression Regulation , Amino Acid Sequence , Animals , Ataxia Telangiectasia Mutated Proteins/metabolism , Binding Sites , Cell Line , Cyclic AMP/metabolism , Cyclic AMP Response Element-Binding Protein/chemistry , Cyclic AMP Response Element-Binding Protein/genetics , Gluconeogenesis/genetics , Male , Mice , Mice, Knockout , Phosphorylation , Protein Binding , Protein Interaction Domains and Motifs , Signal Transduction , Transcription Factors/metabolism
7.
Hum Mol Genet ; 24(3): 757-72, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25281658

ABSTRACT

Pathological aggregation and mutation of the 43-kDa TAR DNA-binding protein (TDP-43) are strongly implicated in the pathogenesis amyotrophic lateral sclerosis and frontotemporal lobar degeneration. TDP-43 neurotoxicity has been extensively modeled in mice, zebrafish, Caenorhabditis elegans and Drosophila, where selective expression of TDP-43 in motoneurons led to paralysis and premature lethality. Through a genetic screen aimed to identify genetic modifiers of TDP-43, we found that the Drosophila dual leucine kinase Wallenda (Wnd) and its downstream kinases JNK and p38 influenced TDP-43 neurotoxicity. Reducing Wnd gene dosage or overexpressing its antagonist highwire partially rescued TDP-43-associated premature lethality. Downstream of Wnd, the JNK and p38 kinases played opposing roles in TDP-43-associated neurodegeneration. LOF alleles of the p38b gene as well as p38 inhibitors diminished TDP-43-associated premature lethality, whereas p38b GOF caused phenotypic worsening. In stark contrast, disruptive alleles of Basket (Bsk), the Drosophila homologue of JNK, exacerbated longevity shortening, whereas overexpression of Bsk extended lifespan. Among possible mechanisms, we found motoneuron-directed expression of TDP-43 elicited oxidative stress and innate immune gene activation that were exacerbated by p38 GOF and Bsk LOF, respectively. A key pathologic role for innate immunity in TDP-43-associated neurodegeneration was further supported by the finding that genetic suppression of the Toll/Dif and Imd/Relish inflammatory pathways dramatically extended lifespan of TDP-43 transgenic flies. We propose that oxidative stress and neuroinflammation are intrinsic components of TDP-43-associated neurodegeneration and that the balance between cytoprotective JNK and cytotoxic p38 signaling dictates phenotypic outcome to TDP-43 expression in Drosophila.


Subject(s)
DNA-Binding Proteins/metabolism , Disease Models, Animal , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , JNK Mitogen-Activated Protein Kinases/metabolism , TDP-43 Proteinopathies/immunology , TDP-43 Proteinopathies/pathology , Animals , Animals, Genetically Modified , Drosophila melanogaster/immunology , Genes, Lethal , Humans , Immunity, Innate , MAP Kinase Kinase Kinases/metabolism , MAP Kinase Signaling System , Oxidative Stress , TDP-43 Proteinopathies/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism
8.
J Biol Chem ; 288(34): 24731-41, 2013 Aug 23.
Article in English | MEDLINE | ID: mdl-23833192

ABSTRACT

The list of factors that participate in the DNA damage response to maintain genomic stability has expanded significantly to include a role for proteins involved in RNA processing. Here, we provide evidence that the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS) is a novel component of the DNA damage response. We demonstrate that FUS is rapidly recruited to sites of laser-induced DNA double-strand breaks (DSBs) in a manner that requires poly(ADP-ribose) (PAR) polymerase activity, but is independent of ataxia-telangiectasia mutated kinase function. FUS recruitment is mediated by the arginine/glycine-rich domains, which interact directly with PAR. In addition, we identify a role for the prion-like domain in promoting accumulation of FUS at sites of DNA damage. Finally, depletion of FUS diminished DSB repair through both homologous recombination and nonhomologous end-joining, implicating FUS as an upstream participant in both pathways. These results identify FUS as a new factor in the immediate response to DSBs that functions downstream of PAR polymerase to preserve genomic integrity.


Subject(s)
DNA Breaks, Double-Stranded , DNA Repair/physiology , Genomic Instability/physiology , Poly(ADP-ribose) Polymerases/metabolism , RNA-Binding Protein FUS/metabolism , Cell Line, Tumor , Humans , Lasers/adverse effects , Poly Adenosine Diphosphate Ribose/genetics , Poly Adenosine Diphosphate Ribose/metabolism , Poly(ADP-ribose) Polymerases/genetics , Protein Structure, Tertiary , RNA-Binding Protein FUS/genetics
9.
J Biol Chem ; 288(33): 23765-75, 2013 Aug 16.
Article in English | MEDLINE | ID: mdl-23814058

ABSTRACT

The cyclic AMP response element-binding protein (CREB) initiates transcriptional responses to a wide variety of stimuli. CREB activation involves its phosphorylation on Ser-133, which promotes interaction between the CREB kinase-inducible domain (KID) and the KID-interacting domain of the transcriptional coactivator, CREB-binding protein (CBP). The KID also contains a highly conserved phosphorylation cluster, termed the ATM/CK cluster, which is processively phosphorylated in response to DNA damage by the coordinated actions of ataxia-telangiectasia-mutated (ATM) and casein kinases (CKs) 1 and 2. The ATM/CK cluster phosphorylation attenuates CBP binding and CREB transcriptional activity. Paradoxically, it was recently reported that DNA damage activates CREB through homeodomain-interacting protein kinase 2-dependent phosphorylation of Ser-271 near the CREB bZIP DNA binding domain. In this study we sought to further clarify DNA damage-dependent CREB phosphorylation as well as to explore the possibility that the ATM/CK cluster and Ser-271 synergistically or antagonistically modulate CREB activity. We show that, rather than being induced by DNA damage, Ser-270 and Ser-271 of CREB cophosphorylated in a CDK1-dependent manner during G2/M phase. Functionally, we show that phosphorylation of CREB on Ser-270/Ser-271 during mitosis correlated with reduced CREB chromatin occupancy. Furthermore, CDK1-dependent phosphorylation of CREB in vitro inhibited its DNA binding activity. The combined results suggest that CDK1-dependent phosphorylation of CREB on Ser-270/Ser-271 facilitates its dissociation from chromatin during mitosis by reducing its intrinsic DNA binding potential.


Subject(s)
CDC2 Protein Kinase/metabolism , Chromatin/metabolism , Cyclic AMP Response Element-Binding Protein/metabolism , Amino Acid Sequence , Cyclic AMP Response Element-Binding Protein/chemistry , DNA/metabolism , DNA Damage , Electrophoretic Mobility Shift Assay , HEK293 Cells , HeLa Cells , Humans , Molecular Sequence Data , Nocodazole/pharmacology , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Binding/drug effects , Spindle Apparatus/drug effects , Spindle Apparatus/metabolism
10.
PLoS One ; 8(2): e57214, 2013.
Article in English | MEDLINE | ID: mdl-23468938

ABSTRACT

Cytosolic aggregation of the nuclear RNA-binding protein TDP-43 is a histopathologic signature of degenerating neurons in amyotrophic lateral sclerosis (ALS), and mutations in the TARDBP gene encoding TDP-43 cause dominantly inherited forms of this condition. To understand the relationship between TDP-43 misregulation and neurotoxicity, we and others have used Drosophila as a model system, in which overexpression of either wild-type TDP-43 or its ALS-associated mutants in neurons is sufficient to induce neurotoxicity, paralysis, and early death. Using microarrays, we have examined gene expression patterns that accompany TDP-43-induced neurotoxicity in the fly system. Constitutive expression of TDP-43 in the Drosophila compound eye elicited widespread gene expression changes, with strong upregulation of cell cycle regulatory genes and genes functioning in the Notch intercellular communication pathway. Inducible expression of TDP-43 specifically in neurons elicited significant expression differences in a more restricted set of genes. Genes that were upregulated in both paradigms included SpindleB and the Notch target Hey, which appeared to be a direct TDP-43 target. Mutations that diminished activity of Notch or disrupted the function of downstream Notch target genes extended the lifespan of TDP-43 transgenic flies, suggesting that Notch activation was deleterious in this model. Finally, we showed that mutation of the nucleoporin Nup50 increased the lifespan of TDP-43 transgenic flies, suggesting that nuclear events contribute to TDP-43-dependent neurotoxicity. The combined findings identified pathways whose deregulation might contribute to TDP-43-induced neurotoxicity in Drosophila.


Subject(s)
DNA-Binding Proteins/toxicity , Drosophila/drug effects , Nervous System/drug effects , RNA-Binding Proteins/toxicity , Animals , Animals, Genetically Modified , Apoptosis , DNA-Binding Proteins/genetics , Drosophila/genetics , Nervous System/metabolism , RNA-Binding Proteins/genetics
11.
Hum Mol Genet ; 21(22): 4845-56, 2012 Nov 15.
Article in English | MEDLINE | ID: mdl-22872699

ABSTRACT

Cytosolic aggregation of the nuclear RNA-binding protein (RBP) TDP-43 (43 kDa TAR DNA-binding domain protein) is a suspected direct or indirect cause of motor neuron deterioration in amyotrophic lateral sclerosis (ALS). In this study, we implemented a high-content, genome-wide RNAi screen to identify pathways controlling TDP-43 nucleocytoplasmic shuttling. We identified ∼60 genes whose silencing increased the cytosolic localization of TDP-43, including nuclear pore complex components and regulators of G2/M cell cycle transition. In addition, we identified the type 1 inositol-1,4,5-trisphosphate (IP3) receptor (ITPR1), an IP3-gated, endoplasmic reticulum (ER)-resident Ca(2+) channel, as a strong modulator of TDP-43 nucleocytoplasmic shuttling. Knockdown or chemical inhibition of ITPR1 induced TDP-43 nuclear export in immortalized cells and primary neurons and strongly potentiated the recruitment of TDP-43 to Ubiquilin-positive autophagosomes, suggesting that diminished ITPR1 function leads to autophagosomal clearance of TDP-43. The functional significance of the TDP-43-ITPR1 genetic interaction was tested in Drosophila, where mutant alleles of ITPR1 were found to significantly extended lifespan and mobility of flies expressing TDP-43 under a motor neuron driver. These combined findings implicate IP3-gated Ca(2+) as a key regulator of TDP-43 nucleoplasmic shuttling and proteostasis and suggest pharmacologic inhibition of ITPR1 as a strategy to combat TDP-43-induced neurodegeneration in vivo.


Subject(s)
DNA-Binding Proteins/metabolism , Inositol 1,4,5-Trisphosphate Receptors/metabolism , Adaptor Proteins, Vesicular Transport/metabolism , Animals , Cell Line , Cell Nucleus/metabolism , Cytoplasm/metabolism , DNA-Binding Proteins/toxicity , Drosophila/genetics , Drosophila/metabolism , Gene Expression Regulation , Gene Knockdown Techniques , HeLa Cells , High-Throughput Screening Assays , Humans , Inositol 1,4,5-Trisphosphate Receptors/genetics , Male , Mutation , Phagosomes/metabolism , Protein Transport , RNA Interference
12.
Wiley Interdiscip Rev RNA ; 3(2): 265-85, 2012.
Article in English | MEDLINE | ID: mdl-22028183

ABSTRACT

Neurodegenerative diseases are a diverse group of disorders that affect different neuron populations, differ in onset and severity, and can be either inherited or sporadic. One common pathological feature of most of these diseases is the presence of insoluble inclusions in and around neurons, which largely consist of misfolded and aggregated protein. For this reason, neurodegenerative diseases are typically thought to be disorders of aberrant protein processing, in which the cumulative effects of misfolded protein aggregates overwhelm the neuron's proteostatic capacity. However, a growing body of evidence suggests a role for abnormal RNA processing in neurodegenerative disease. The importance of RNA metabolism in disease was highlighted by the discovery of TDP-43 (TAR DNA-binding protein of 43 kDa), an RNA-binding protein (RBP), as a primary component of insoluble aggregates in patients with sporadic amyotrophic lateral sclerosis (ALS). Subsequently, inherited mutations in TDP-43 and the structurally related RBP, FUS/TLS (fused in sarcoma/translated in liposarcoma), were found to cause ALS. These exciting findings have ushered in a new era of ALS research in which the deregulation of RNA metabolism is viewed as a central cause of motor neuron deterioration. In addition, the fact that neuropathologically and anatomically distinct neurodegenerative diseases display altered RNA metabolism suggests that common pathologic mechanisms may underlie many of these disorders.


Subject(s)
DNA-Binding Proteins/metabolism , Neurodegenerative Diseases/physiopathology , RNA-Binding Proteins/metabolism , Amyotrophic Lateral Sclerosis/physiopathology , DNA-Binding Proteins/genetics , Humans , Mutant Proteins/genetics , Mutant Proteins/metabolism , Neurodegenerative Diseases/congenital , RNA Processing, Post-Transcriptional , RNA-Binding Proteins/genetics
13.
J Biol Chem ; 286(14): 12766-74, 2011 Apr 08.
Article in English | MEDLINE | ID: mdl-21324900

ABSTRACT

The mammalian circadian clock component PERIOD2 (PER2) plays a critical role in circadian rhythm entrainment. Recently, a missense mutation at a putative phosphorylation site in hPER2, Ser-662, was identified in patients that suffer from familial advanced sleep phase syndrome (FASPS). Patients with FASPS display abnormal sleep-wake patterns characterized by a lifelong pattern of sleep onset in the early evening and offset in the early morning. Although the phosphorylation of PER2 is strongly implied from functional studies, it has not been possible to study the site-specific phosphorylation of PER2 on Ser-662, and the biochemical functions of this residue are unclear. Here, we used phospho-specific antibodies to show that PER2 is phosphorylated on Ser-662 and flanking casein kinase (CK) sites in vivo. The phosphorylation of PER2 was carried out by the combined activities of casein kinase 1δ (CK1 δ) and casein kinase 1ε (CK1ε) and was antagonized by protein phosphatase 1. PER2 phosphorylation was rapidly induced in response to circadian entrainment of mammalian cell lines and occurred in both cytosolic and nuclear compartments. Importantly, we found that the pool of Ser-662-phosphorylated PER2 proteins was more stable than the pool of total PER2 molecules, implying that the FASPS phosphorylation cluster antagonizes PER2 degradation. Consistent with this idea, a Ser-662→Ala mutation that abrogated PER2 phosphorylation significantly reduced its half-life, whereas a phosphomimetic Ser-662→Asp substitution led to an elevation in half-life. Our combined findings provide new insights into PER2 regulation and the biochemical basis of FASPS.


Subject(s)
Casein Kinase I/metabolism , Period Circadian Proteins/metabolism , Sleep Disorders, Circadian Rhythm/metabolism , Animals , Cell Line , Circadian Rhythm/genetics , Humans , Immunoblotting , Mice , NIH 3T3 Cells , Phosphoprotein Phosphatases/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism
14.
J Biol Chem ; 286(10): 8688-8696, 2011 Mar 11.
Article in English | MEDLINE | ID: mdl-21233202

ABSTRACT

Ribosomal protein S6 (rpS6) is a critical component of the 40 S ribosomal subunit that mediates translation initiation at the 5'-m(7)GpppG cap of mRNA. In response to mitogenic stimuli, rpS6 undergoes ordered C-terminal phosphorylation by p70 S6 kinases and p90 ribosomal S6 kinases on four conserved Ser residues (Ser-235, Ser-236, Ser-240, and Ser-244) whose modification potentiates rpS6 cap binding activity. A fifth site, Ser-247, is also known to be phosphorylated, but its function and regulation are not well characterized. In this study, we employed phospho-specific antibodies to show that Ser-247 is a target of the casein kinase 1 (CK1) family of protein kinases. CK1-dependent phosphorylation of Ser-247 was induced by mitogenic stimuli and required prior phosphorylation of upstream S6 kinase/ribosomal S6 kinase residues. CK1-mediated phosphorylation of Ser-247 also enhanced the phosphorylation of upstream sites, which implies that bidirectional synergy between C-terminal phospho-residues is required to sustain rpS6 phosphorylation. Consistent with this idea, CK1-dependent phosphorylation of rpS6 promotes its association with the mRNA cap-binding complex in vitro. Additionally, we show that protein phosphatase 1 (PP1) antagonizes rpS6 C terminus phosphorylation and cap binding in intact cells. These findings further our understanding of rpS6 phospho-regulation and define a direct link between CK1 and translation initiation.


Subject(s)
Casein Kinase I/metabolism , Peptide Chain Initiation, Translational/physiology , Protein Phosphatase 1/metabolism , RNA Caps/metabolism , Ribosomal Protein S6/metabolism , Casein Kinase I/genetics , HEK293 Cells , Humans , Phosphorylation/physiology , Protein Phosphatase 1/genetics , RNA Caps/genetics , Ribosomal Protein S6/genetics , Ribosomal Protein S6 Kinases, 70-kDa/genetics , Ribosomal Protein S6 Kinases, 70-kDa/metabolism
15.
PLoS One ; 5(8): e12173, 2010 Aug 13.
Article in English | MEDLINE | ID: mdl-20730097

ABSTRACT

Activating transcription factor 1 (ATF1) and the closely related proteins CREB (cyclic AMP resonse element binding protein) and CREM (cyclic AMP response element modulator) constitute a subfamily of bZIP transcription factors that play critical roles in the regulation of cellular growth, metabolism, and survival. Previous studies demonstrated that CREB is phosphorylated on a cluster of conserved Ser residues, including Ser-111 and Ser-121, in response to DNA damage through the coordinated actions of the ataxia-telangiectasia-mutated (ATM) protein kinase and casein kinases 1 and 2 (CK1/2). Here, we show that DNA damage-induced phosphorylation by ATM is a general feature of CREB and ATF1. ATF1 harbors a conserved ATM/CK cluster that is constitutively and stoichiometrically phosphorylated by CK1 and CK2 in asynchronously growing cells. Exposure to DNA damage further induced ATF1 phosphorylation on Ser-51 by ATM in a manner that required prior phosphorylation of the upstream CK residues. Hyperphosphorylated ATF1 showed a 4-fold reduced affinity for CREB-binding protein. We further show that PP2A, in conjunction with its targeting subunit B56gamma, antagonized ATM and CK1/2-dependent phosphorylation of CREB and ATF1 in cellulo. Finally, we show that CK sites in CREB are phosphorylated during cellular growth and that phosphorylation of these residues reduces the threshold of DNA damage required for ATM-dependent phosphorylation of the inhibitory Ser-121 residue. These studies define overlapping and distinct modes of CREB and ATF1 regulation by phosphorylation that may ensure concerted changes in gene expression mediated by these factors.


Subject(s)
Activating Transcription Factor 1/metabolism , Conserved Sequence , Cyclic AMP Response Element-Binding Protein/metabolism , DNA Damage , Protein Phosphatase 2/metabolism , Activating Transcription Factor 1/chemistry , Amino Acid Sequence , Animals , Ataxia Telangiectasia Mutated Proteins , CREB-Binding Protein/chemistry , CREB-Binding Protein/metabolism , Casein Kinase I/metabolism , Casein Kinase II/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Cell Proliferation , Culture Media, Conditioned/pharmacology , Cyclic AMP Response Element-Binding Protein/chemistry , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Evolution, Molecular , Gene Expression Regulation, Enzymologic , HeLa Cells , Humans , Mice , Molecular Sequence Data , Phosphorylation/drug effects , Phosphorylation/radiation effects , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Structure, Tertiary , RNA, Messenger/genetics , RNA, Messenger/metabolism , Serine/metabolism , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/metabolism
16.
J Biol Chem ; 285(44): 34097-105, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-20720006

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is an incurable neurodegenerative disease that preferentially targets motor neurons. It was recently found that dominant mutations in two related RNA-binding proteins, TDP-43 (43-kDa TAR DNA-binding domain protein) and FUS/TLS (fused in sarcoma/translated in liposarcoma) cause a subset of ALS. The convergent ALS phenotypes associated with TDP-43 and FUS/TLS mutations are suggestive of a functional relationship; however, whether or not TDP-43 and FUS/TLS operate in common biochemical pathways is not known. Here we show that TDP-43 and FUS/TLS directly interact to form a complex at endogenous expression levels in mammalian cells. Binding was mediated by an unstructured TDP-43 C-terminal domain and occurred within the context of a 300-400-kDa complex that also contained C-terminal cleavage products of TDP-43 linked to neuropathology. TDP-43 C-terminal fragments were excluded from large molecular mass TDP-43 ribonucleoprotein complexes but retained FUS/TLS binding activity. The functional significance of TDP-43-FUS/TLS complexes was established by showing that RNAi silencing of either TDP-43 or FUS/TLS reduced the expression of histone deacetylase (HDAC) 6 mRNA. TDP-43 and FUS/TLS associated with HDAC6 mRNA in intact cells and in vitro, and competition experiments suggested that the proteins occupy overlapping binding sites. The combined findings demonstrate that TDP-43 and FUS/TLS form a functional complex in intact cells and suggest that convergent ALS phenotypes associated with TDP-43 and FUS/TLS mutations may reflect their participation in common biochemical processes.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/chemistry , Gene Expression Regulation , Histone Deacetylases/chemistry , RNA-Binding Protein FUS/chemistry , Cell Line , HeLa Cells , Histone Deacetylase 6 , Humans , Motor Neurons/metabolism , Mutation , Phenotype , Protein Interaction Mapping , RNA Interference , RNA, Messenger/metabolism , RNA-Binding Proteins/chemistry
17.
J Biol Chem ; 285(20): 15201-15208, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20304914

ABSTRACT

Camptothecin (CPT) is a topoisomerase I inhibitor, derivatives of which are being used for cancer chemotherapy. CPT-induced DNA double-strand breaks (DSBs) are considered a major cause of its tumoricidal activity, and it has been shown that CPT induces DNA damage signaling through the phosphatidylinositol 3-kinase-related kinases, including ATM (ataxia telangiectasia mutated), ATR (ATM and Rad3-related), and DNA-PK (DNA-dependent protein kinase). In addition, CPT causes DNA strand breaks mediated by transcription, although the downstream signaling events are less well characterized. In this study, we show that CPT-induced activation of ATM requires transcription. Mechanistically, transcription inhibition suppressed CPT-dependent activation of ATM and blocked recruitment of the DNA damage mediator p53-binding protein 1 (53BP1) to DNA damage sites, whereas ATM inhibition abrogated CPT-induced G(1)/S and S phase checkpoints. Functional inactivation of ATM resulted in DNA replication-dependent hyperactivation of DNA-PK in CPT-treated cells and dramatic CPT hypersensitivity. On the other hand, simultaneous inhibition of ATM and DNA-PK partially restored CPT resistance, suggesting that activation of DNA-PK is proapoptotic in the absence of ATM. Correspondingly, comet assay and cell cycle synchronization experiments suggested that transcription collapse occurring as the result of CPT treatment are converted to frank double-strand breaks when ATM-deficient cells bypass the G(1)/S checkpoint. Thus, ATM suppresses DNA-PK-dependent cell death in response to topoisomerase poisons, a finding with potential clinical implications.


Subject(s)
Camptothecin/pharmacology , Cell Cycle Proteins/metabolism , Cell Death/physiology , DNA-Activated Protein Kinase/physiology , DNA-Binding Proteins/metabolism , Enzyme Inhibitors/pharmacology , Protein Serine-Threonine Kinases/metabolism , Topoisomerase I Inhibitors , Transcription, Genetic , Tumor Suppressor Proteins/metabolism , Ataxia Telangiectasia Mutated Proteins , Cell Cycle , Cell Cycle Proteins/genetics , Cell Line, Tumor , DNA-Binding Proteins/genetics , Flow Cytometry , Humans , Protein Serine-Threonine Kinases/genetics , Tumor Suppressor Proteins/genetics
18.
J Biol Chem ; 285(15): 11068-72, 2010 Apr 09.
Article in English | MEDLINE | ID: mdl-20154090

ABSTRACT

TDP-43 (43-kDa TAR DNA-binding protein) is a major constituent of ubiquitin-positive cytosolic aggregates present in neurons of patients with amyotrophic lateral sclerosis (ALS) and ubiquitin-positive fronto-temporal lobar degeneration (FTLD-U). Inherited mutations in TDP-43 have been linked to familial forms of ALS, indicating a key role for TDP-43 in disease pathogenesis. Here, we describe a Drosophila melanogaster model of TDP-43 proteinopathy. Expression of wild-type human TDP-43 protein in Drosophila motor neurons led to motor dysfunction and dramatic reduction of life span. Interestingly, coexpression of ubiquilin 1, a previously identified TDP-43-interacting protein with suspected functions in autophagy and proteasome targeting, reduced steady-state TDP-43 expression but enhanced the severity of TDP-43 phenotypes. Finally, ectopically expressed TDP-43 was largely localized to motor neuron nuclei, suggesting that expression of wild-type TDP-43 alone is detrimental even in the absence of cytosolic aggregation. Our findings demonstrate that TDP-43 exerts cell-autonomous neurotoxicity in Drosophila and further imply that dose-dependent alterations of TDP-43 nuclear function may underlie motor neuron death in ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/metabolism , DNA-Binding Proteins/physiology , Ubiquitin/chemistry , Animals , Cell Nucleus/metabolism , DNA-Binding Proteins/chemistry , Disease Models, Animal , Drosophila melanogaster , Humans , Models, Biological , Motor Neurons/metabolism , Neurons/metabolism , Phenotype , Proteasome Endopeptidase Complex/metabolism , Time Factors , Transgenes
19.
DNA Repair (Amst) ; 9(1): 76-82, 2010 Jan 02.
Article in English | MEDLINE | ID: mdl-19959400

ABSTRACT

The ubiquitin-proteasome pathway plays an important role in DNA damage signaling and repair by facilitating the recruitment and activation of DNA repair factors and signaling proteins at sites of damaged chromatin. Proteasome activity is generally not thought to be required for activation of apical signaling kinases including the PI3K-related kinases (PIKKs) ATM, ATR, and DNA-PK that orchestrate downstream signaling cascades in response to diverse genotoxic stimuli. In a previous work, we showed that inhibition of the proteasome by MG-132 suppressed 53BP1 (p53 binding protein1) phosphorylation as well as RPA2 (replication protein A2) phosphorylation in response to the topoisomerase I (TopI) poison camptothecin (CPT). To address the mechanism of proteasome-dependent RPA2 phosphorylation, we investigated the effects of proteasome inhibitors on the upstream PIKKs. MG-132 sharply suppressed CPT-induced DNA-PKcs autophosphorylation, a marker of the activation, whereas the phosphorylation of ATM and ATR substrates was only slightly suppressed by MG-132, suggesting that DNA-PK among the PIKKs is specifically regulated by the proteasome in response to CPT. On the other hand, MG-132 did not suppress DNA-PK activation in response to UV or IR. MG-132 blocked the interaction between DNA-PKcs and Ku heterodimer enhanced by CPT, and hydroxyurea pre-treatment completely abolished CPT-induced DNA-PKcs autophosphorylation, indicating a requirement for ongoing DNA replication. CPT-induced TopI degradation occurred independent of DNA-PK activation, suggesting that DNA-PK activation does not require degradation of trapped TopI complexes. The combined results suggest that CPT-dependent replication fork collapse activates DNA-PK signaling through a proteasome dependent, TopI degradation-independent pathway. The implications of DNA-PK activation in the context of TopI poison-based therapies are discussed.


Subject(s)
Camptothecin/pharmacology , DNA-Activated Protein Kinase/metabolism , Leupeptins/pharmacology , Protease Inhibitors/pharmacology , Cell Line, Tumor , Cyclin-Dependent Kinases/metabolism , DNA Replication/drug effects , Enzyme Activation/drug effects , Humans , Phosphorylation/drug effects , Proteasome Inhibitors , Replication Protein A/metabolism
20.
BMB Rep ; 42(3): 142-7, 2009 Mar 31.
Article in English | MEDLINE | ID: mdl-19336000

ABSTRACT

Small-molecule inhibitors of protein kinases have contributed immensely to our understanding of biological signaling pathways and have been exploited therapeutically for the treatment of cancers and other disease states. The pyridinyl imidazole compounds SB 203580 and SB 202190 were identified as ATP competitive antagonists of the p38 stress-activated protein kinases and have been widely used to elucidate p38-dependent cellular processes. Here, we identify SB 203580 and SB 202190 as potent inhibitors of stress-induced CREB phosphorylation on Serine 111 (Ser-111) in intact cells. Unexpectedly, we found that the inhibitory activity of SB 203580 and SB 202190 on CREB phosphorylation was independent of p38, but instead correlated with inhibition of casein kinase 1 (CK1) in vitro. The inhibition of CK1-mediated CREB phosphorylation by concentrations of pyridinyl imidazoles commonly employed to suppress p38, suggests that in some cases conclusions of p38-dependence derived solely from the use of these inhibitors may be invalid.


Subject(s)
Casein Kinase I/antagonists & inhibitors , Imidazoles/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyridines/pharmacology , p38 Mitogen-Activated Protein Kinases/antagonists & inhibitors , Cell Line , Cyclic AMP Response Element-Binding Protein/metabolism , Humans , Phosphorylation/drug effects , Phosphoserine/metabolism , Protein Biosynthesis/drug effects , Stress, Physiological/drug effects , Substrate Specificity/drug effects , Suppression, Genetic/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...