Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 1377, 2023 01 25.
Article in English | MEDLINE | ID: mdl-36697463

ABSTRACT

Tyrosyl-DNA phosphodiesterase I (Tdp1) hydrolyzes phosphodiester-linked adducts from both ends of DNA. This includes the topoisomerase I (TOP1)-DNA covalent reaction intermediate that is the target of the camptothecin class of chemotherapeutics. Tdp1 two-step catalysis is centered on the formation of a Tdp1-DNA covalent complex (Tdp1cc) using two catalytic histidines. Here, we examined the role of the understudied, structurally undefined, and poorly conserved N-terminal domain (NTD) of Tdp1 in context of full-length protein in its ability to remove TOP1cc in cells. Using toxic Tdp1 mutants, we observed that the NTD is critical for Tdp1's ability to remove TOP1-DNA adducts in yeast. Full-length and N-terminal truncated Tdp1 mutants showed similar expression levels and cellular distribution yet an inversed TOP1-dependent toxicity. Single turnover catalysis was significantly different between full-length and truncated catalytic mutants but not wild-type enzyme, suggesting that Tdp1 mutants depend on the NTD for catalysis. These observations suggest that the NTD plays a critical role in the regulation of Tdp1 activity and interaction with protein-DNA adducts such as TOP1cc in cells. We propose that the NTD is a regulatory domain and coordinates stabilization of the DNA-adducted end within the catalytic pocket to access the phosphodiester linkage for hydrolysis.


Subject(s)
DNA Adducts , DNA Topoisomerases, Type I , Phosphoric Diester Hydrolases , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , DNA , DNA Repair , DNA Topoisomerases, Type I/metabolism , Phosphoric Diester Hydrolases/metabolism , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae Proteins/metabolism
2.
Xenobiotica ; 48(1): 79-88, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28084139

ABSTRACT

1. Human cytosolic sulfotransferase 1B1 (SULT1B1) sulfates small phenolic compounds and bioactivates polycyclic aromatic hydrocarbons. To date, no SULT1B1 allelic variants have been well-characterized. 2. While cloning SULT1B1 from human endometrial specimens, an allelic variant resulting in valine instead of leucine at the 145th amino acid position (L145V) was detected. NCBI reported this alteration as the highest frequency SULT1B1 allelic variant. 3. L145V frequency comprised 9% of 37 mixed-population human patients and was specific to African Americans with an allelic frequency of 25%. Structurally, replacement of leucine with valine potentially destabilizes a conserved helix (α8) that forms the "floor" of both the substrate and PAPS binding domains. This destabilization results in altered kinetic properties including a four-fold decrease in affinity for PAP (3', 5'-diphosphoadenosine). Kms for 3'-phosphoadenosine- 5'-phosphosulfate (PAPS) are similar; however, maximal turnover rate of the variant isoform (0.86 pmol/(min*µg)) is slower than wild-type (WT) SULT1B1 (1.26 pmol/(min*µg)). The L145V variant also displays altered kinetics toward small phenolic substrates, including a diminished p-nitrophenol Km and increased susceptibility to 1-naphthol substrate inhibition. 4. No significant correlation between genotype and prostate or colorectal cancer was observed in patients; however, the variant isoform could underlie specific pathologies in sub-Saharan African carriers.


Subject(s)
Sulfotransferases/genetics , Black or African American , Humans , Mutation, Missense
3.
Horm Mol Biol Clin Investig ; 29(1): 27-36, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-28222028

ABSTRACT

Human cytosolic sulfotransferase 1C4 (hSULT1C4) is a dimeric Phase II drug-metabolizing enzyme primarily expressed in the developing fetus. SULTs facilitate the transfer of a hydrophilic sulfonate moiety from 3'-phosphoadenosine-5'-phosphosulfate (PAPS) onto an acceptor substrate altering the substrate's biological activity and increasing the compound's water solubility. While several of the hSULTs' endogenous and xenobiotic substrates have been identified, the physiological function of hSULT1C4 remains unknown. The fetal expression of hSULT1C4 leads to the hypothesis that the function of this enzyme may be to regulate metabolic and hormonal signaling molecules, such as estrogenic compounds, that may be generated or consumed by the mother during fetal development. Human SULT1C4 has previously been shown to sulfonate estrogenic compounds, such as catechol estrogens; therefore, this study focused on the expression and purification of hSULT1C4 in order to further characterize this enzyme's sulfonation of estrogenic compounds. Molecular modeling of the enzyme's native properties helped to establish a novel purification protocol for hSULT1C4. The optimal activity assay conditions for hSULT1C4 were determined to be pH 7.4 at 37°C for up to 10 min. Kinetic analysis revealed the enzyme's reduced affinity for PAPS compared to PAP. Human SULT1C4 sulfonated all the estrogenic compounds tested, including dietary flavonoids and environmental estrogens; however, the enzyme has a higher affinity for sulfonation of flavonoids. These results suggest hSULT1C4 could be metabolizing and regulating hormone signaling pathways during human fetal development.


Subject(s)
Cytosol/enzymology , Sulfotransferases/chemistry , Sulfotransferases/metabolism , Cloning, Molecular , Humans , Kinetics , Models, Molecular , Protein Conformation , Protein Isoforms , Sulfotransferases/isolation & purification
4.
Biochem Pharmacol ; 115: 123-33, 2016 09 01.
Article in English | MEDLINE | ID: mdl-27338799

ABSTRACT

Cytosolic sulfotransferases (SULTs) biotransform small molecules to polar sulfate esters as a means to alter their activities within the body. Understanding the molecular mechanism by which the SULTs perform their function is important for optimizing future therapeutic applications. Recent evidence suggests each SULT isoform acts by a half-site reaction (HSR) mechanism, in which a single SULT dimer subunit is active at any given time. HSR requires communication through the highly conserved KxxxTVxxxE dimerization motif. In this investigation, we sought to test the intersubunit interactions of SULT1B1 as it relates to enzyme activity. We generated two populations of SULT1B1 isoforms that efficiently heterodimerize upon mixing by targeted point mutation of the KxxxTVxxxE motif to KxxxTVxxxK or ExxxTVxxxE. The heterodimer exhibited wildtype-like activity with regard to native size, thermal integrity, PAP affinity, and PAPS Km, therefore serving as a valid model for investigating SULT1B1 dimer subunit interactions. The approach granted control over each independent subunit, permitting mutation of the critical 3'-phosphoadenosine 5'-phosphosulfate (PAPS) binding residue Arg258 and/or the catalytic base His109 in a single subunit of the dimer. Substitution of the dysfunctional subunits for fully active subunits yielded dimeric SULT1B1 with 50% the activity of the fully competent dimer, suggesting SULT1B1 intersubunit communication does not significantly contribute to the isoform's activity. These results are a testament to the unique properties of individual SULT isoforms. The dimerization system described in this manuscript can be used to study subunit interactions in other SULT isoforms as well as proteins in other families.


Subject(s)
Protein Subunits/chemistry , Sulfotransferases/chemistry , Cloning, Molecular , Dimerization , Humans , Mutagenesis , Protein Isoforms/chemistry , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification , Sulfotransferases/genetics , Sulfotransferases/isolation & purification
5.
Pharmacol Res Perspect ; 3(3): e00147, 2015 Jun.
Article in English | MEDLINE | ID: mdl-26236487

ABSTRACT

The cytosolic sulfotransferases (SULTs) are dimeric enzymes that catalyze the transformation of hydrophobic drugs and hormones into hydrophilic sulfate esters thereby providing the body with an important pathway for regulating small molecule activity and excretion. While SULT dimerization is highly conserved, the necessity for the interaction has not been established. To perform its function, a SULT must efficiently bind the universal sulfate donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), and release the byproduct, 3', 5'-diphosphoadenosine (PAP), following catalysis. We hypothesize this efficient binding and release of PAPS/PAP may be connected to SULT dimerization. To allow for the visualization of dynamic protein interactions critical for addressing this hypothesis and to generate kinetically testable hypotheses, molecular dynamic simulations (MDS) of hSULT1B1 were performed with PAPS and PAP bound to each dimer subunit in various combinations. The results suggest the dimer subunits may possess the capability of communicating with one another in a manner dependent on the presence of the cofactor. PAP or PAPS binding to a single side of the dimer results in decreased backbone flexibility of both the bound and unbound subunits, implying the dimer subunits may not act independently. Further, binding of PAP to one subunit of the dimer and PAPS to the other caused increased flexibility in the subunit bound to the inactive cofactor (PAP). These results suggest SULT dimerization may be important in maintaining cofactor binding/release properties of SULTs and provide hypothetical explanations for SULT half-site reactivity and substrate inhibition, which can be analyzed in vitro.

6.
Drug Metab Pharmacokinet ; 30(1): 3-20, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25760527

ABSTRACT

The cytosolic sulfotransferases (SULTs) are dimeric enzymes that help maintain homeostasis through the modulation of hormone and drug activity by catalyzing their transformation into hydrophilic sulfate esters and increasing their excretion. Each of the thirteen active human SULT isoforms displays a unique substrate specificity pattern that underlies its individual role in our bodies. These specificities have proven to be complex, in some cases masking the biological role of specific isoforms. The first part of this review offers a short summary of historical underpinnings of human SULTs, primarily centered on the characterization of each isoform's kinetic and structural properties. Recent structural investigations have revealed each SULT has an active site "lid" that undergoes restructuring once the cofactor/sulfonate donor, 3'-phosphoadenosine-5'-phosphosulfate (PAPS), binds to the enzyme. This structural rearrangement can alter substrate-binding profiles, therefore complicating enzyme/substrate interactions and making substrate/cosubstrate concentrations and binding order important considerations in enzyme functionality. Molecular dynamic simulations have recently been employed to describe this restructuring in an attempt to offer insight to its effects on substrate selectivity. In addition to reviewing new data on SULT molecular dynamics, we will discuss the contribution of PAPS concentrations and SULT dimerization in the regulation of SULT activity within the human body.


Subject(s)
Cytosol/enzymology , Sulfotransferases/chemistry , Sulfotransferases/metabolism , Amino Acid Sequence , Catalysis , Catalytic Domain , Cluster Analysis , Crystallography, X-Ray , Humans , Isoenzymes , Models, Molecular , Molecular Sequence Data , Pharmaceutical Preparations/metabolism , Protein Binding , Protein Multimerization , Sequence Alignment , Substrate Specificity , Sulfotransferases/genetics
7.
Drug Metab Dispos ; 42(3): 352-60, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24335392

ABSTRACT

The cystolic sulfotransferse 1C3 (SULT1C3) gene was identified by computational analysis of the human genome and suggested to contain duplications of its last two exons (7a/b and 8a/b). Although the SULT1C3 isoform containing the more downstream exons 7b and 8b (SULT1C3d) has been expressed in Escherichia coli, crystallized, and characterized for activity, there is currently no evidence that SULT1C3 is expressed in any human tissue. Using reverse-transcription polymerase chain reaction, we detected SULT1C3 mRNA in the colorectal adenocarcinoma cell line (LS180), colon, and small intestine, but the amplified fragment contained the more upstream exons 7a and 8a. 3'-Rapid amplification of cDNA ends (RACE) confirmed that the SULT1C3 transcript expressed in LS180 cells contained exons 7a/8a, whereas 5'-RACE identified a noncoding exon 1. Full-length SULT1C3 transcript containing exons 7a/8a was amplified from LS180 and intestinal RNA, and in vitro transcription-translation of the cloned cDNA indicated that translation primarily began at the first of three in-frame ATG codons. Since SULT1C3 containing exons 7a/8a (SULT1C3a) would differ by 30 amino acids from SULT1C3d containing exons 7b/8b, we considered the functional implications of expressing one or the other isoform by generating structural models based on the reported crystal structure for SULT1C3d. Comparison of the structures indicated that five of the residues forming the substrate-binding pocket differed between the two isoforms, resulting in a change in both electron density and charge distribution along the inner wall of the substrate-binding pocket. These data indicate that SULT1C3 is expressed in human intestine but suggest that the expressed isoform is likely to differ functionally from the isoform that has been previously characterized.


Subject(s)
Colon/enzymology , Intestine, Small/enzymology , Sulfotransferases/genetics , Transcription, Genetic , Amino Acid Sequence , Base Sequence , Cell Line, Tumor , Codon , Exons , Humans , Molecular Sequence Data , Protein Isoforms , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sulfotransferases/biosynthesis , Sulfotransferases/chemistry
8.
Mutagenesis ; 28(5): 609-19, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23894158

ABSTRACT

The benzylic alcohols 1- and 2-hydroxy-3-methylcholanthrene (OH-MC) are major primary metabolites of the carcinogen 3-methylcholanthrene (MC). We investigated them for mutagenicity in TA1538-derived Salmonella typhimurium strains expressing mammalian sulphotransferases (SULTs). 1-OH-MC was efficiently activated by human (h) SULT1B1 (2400 revertants/nmol), weakly activated by hSULT1C3 and hSULT2A1 (2-9 revertants/nmol), but not activated by the other hSULTs studied (1A2, 1A3, 1C2 and 1E1). Mouse, rat and dog SULT1B1 activated 1-OH-MC (8-100 revertants/nmol) with much lower efficiency than their human orthologue. The other isomer, 2-OH-MC, was activated to a potent mutagen by hSULT1A1 (4000-5400 revertants/nmol), weakly activated by hSULT1A2 or hSULT2A1 (1-12 revertants/nmol), but not activated by the other hSULTs. In contrast to their human orthologue, mouse, rat and dog SULT1A1 did not appreciably activate 2-OH-MC (<1 to 6 revertants/nmol), either. Instead, mouse and rat SULT1B1, unlike their human and canine orthologues, demonstrated some activation of 2-OH-MC (15-100 revertants/nmol). Docking analyses indicated that 1- and 2-OH-MC might bind to the active site of hSULT1A1 and hSULT1B1, but only for (S)-2-OH-MC/hSULT1A1 and (R)-1-OH-MC/hSULT1B1 with an orientation suitable for catalysis. Indeed, 1- and 2-OH-MC were potent inhibitors of the hSULT1A1-mediated sulphation of acetaminophen [concentration inhibiting the enzyme activity by 50% (IC50) 15 and 13nM, respectively]. This inhibition was weak with mouse, rat and dog SULT1A1 (IC50 ≥ 4 µM). Inhibition of the SULT1B1 enzymes was moderate, strongest for 1-OH-MC/hSULT1B1. In conclusion, this study provides examples for high selectivity of bioactivation of promutagens by an individual form of human SULT and for pronounced differences in activation capacity between orthologous SULTs from different mammalian species. These characteristics make the detection and evaluation of such mutagens extremely difficult, in particular as the critical form may even differ for positional isomers, such as 1- and 2-OH-MC. Moreover, the species-dependent differences will complicate the verification of in vitro results in animal studies.


Subject(s)
Methylcholanthrene/analogs & derivatives , Mutagens/pharmacokinetics , Salmonella typhimurium/genetics , Sulfotransferases/metabolism , Acetaminophen/chemistry , Acetaminophen/metabolism , Animals , Arylsulfotransferase/antagonists & inhibitors , Arylsulfotransferase/genetics , Arylsulfotransferase/metabolism , Dogs , Enzyme Inhibitors/pharmacology , Humans , Isomerism , Methylcholanthrene/chemistry , Methylcholanthrene/pharmacokinetics , Methylcholanthrene/toxicity , Mice , Molecular Docking Simulation , Mutagenicity Tests , Mutagens/metabolism , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Salmonella typhimurium/enzymology , Species Specificity , Sulfotransferases/chemistry , Sulfotransferases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...