Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Chem ; 17(1): 42, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37098563

ABSTRACT

The physicochemical characteristics of water samples from Lake Hawassa was determined with the aim of pointing out possible impacts of industrial effluents, agricultural chemicals and domestic sewage on the water quality of the lake. For this, a total of 15 physicochemical parameters were measured in 72 water samples collected from four different locations on the lake that are adjacent to areas involved in various human activities including agriculture (Tikur Wuha), resort hotel (Haile Resort), public recreation (Gudumale) and referral hospital (Hitita). Samples were collected over a period of six months covering the dry and wet seasons in 2018/19. One-way analysis of variance revealed the presence of significant difference in the physicochemical quality of the lake's water across the four study areas and the two seasons. Principal component analysis identified the most discriminating characteristics that differentiate the studied areas according to the nature and level of pollution status. Tikur Wuha area was found to be characterized by high levels of EC and TDS, the values of these parameters were about twice or more than that measured in the other areas. This was ascribed to contamination of the lake by runoff water from the surrounding farmlands. On the other hand, the water around the other three areas was characterized by high nitrate, sulfate and phosphate. Hierarchical cluster analysis classified the sampling areas in to two groups, where Tikur Wuha constituted one group and the other three locations the second group. Linear discriminant analysis provided 100% correct classification of the samples into the two cluster groups. The measured values of turbidity, fluoride and nitrate were found to be significantly higher than the standard limits set by national and international guidelines. These results show that the lake has been facing serious pollution problems from various anthropogenic activities.

2.
BMC Chem ; 16(1): 87, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36335377

ABSTRACT

Honey is a natural, sugary and sticky liquid that is produced from the nectars of flowers by the bees. This study aimed to analyze the concentration of some selected heavy Metals in honey samples. 1 g of honey sample was digested by a hot plate using 9ml of HNO3 and 3ml of H2O2. The concentrations of the heavy metals in the digested were detected using a flame atomic absorption spectrometer. The results of this study found that the concentrations of the heavy metals in the honey samples were ranged from 1.97 to 2.04 µg/g for Zn, 1.93 µg/g to 2 µg/g for Cu, 0.83 to 1.01 µg/g for Mn, 0.25 to 0.45 µg/g for Cr, 0.025-0.031 µg/g for Cd. However, Pb was not detected in all honey samples. Hence, the levels of heavy metals found were below the permitted levels set by the World Health Organization. From the results, the levels of heavy metals found were below the permitted levels set by the World Health Organization. Thus, the heavy metals in the sampled honey are safe for human consumption in these selected areas.

3.
BMC Chem ; 16(1): 67, 2022 Sep 15.
Article in English | MEDLINE | ID: mdl-36109785

ABSTRACT

Nowadays, there are more than fourteen major state and private owned textile industries and garment factories in Ethiopia. However, these textile effluents are directly discharged without treatment to the surrounding environment, as a result, the pollutants bring serious problem to the surrounding community including health such as skin diseases, asthma, abortion, carcinogenic effect, biodiversity loss and mutagenic effect on the. The main objective of this study is characterization and treatment of the textile effluent using aluminum electrodes in the electrocoagulation process. EC experimental setups were designed and different parameters were optimized. Electrocoagulation treatment process eliminates physicochemical quality indicators such as pH, electrical conductivity (EC); turbidity, biological oxygen demand (BOD), ammonia; nitrate, nitrite, total nitrogen (TN) and phosphate were determined using standard procedures. From the result, the maximum removal efficiency of phosphate, ammonia, TN, electrical conductivity, turbidity and BOD were obtained 97, 87, 88, 89, 99 and 66%, respectively. Analyses of the electrochemically generated sludge by X-ray Diffraction, Scanning Electron Microscope (SEM), and Fourier Transform Infrared Spectroscopy (FTIR) revealed that the expected crystalline aluminum oxides (bayerite (Al(OH)3 diaspore (AlO(OH)) were found in the sludge. The amorphous phase was also found in the floc. Therefore, a treatment technology was good and encourages the community to apply the technique for the treatment of textile effluent before discharging into the environment.

4.
BMC Chem ; 16(1): 56, 2022 Jul 30.
Article in English | MEDLINE | ID: mdl-35908069

ABSTRACT

Lake Tana is the largest freshwater body in Ethiopia. Currently, the lake has been facing alarming environmental degradation and loss of biodiversity due to the invasion of water hyacinth. Although the weed is invasive, it can be converted into various benefits. Hence, this study was conducted in North Eastern Lake Tana, Sheha Gomengie Kebele. The main objective is compost preparation in terms of its drying periods, analyses, and user perception. Physicochemical and nutrient analyses were performed according to the standard procedures. Acid digestion was used for heavy metal analyses. From the result, the pH measurements ranged from 7.619 ± 0.195 to 7.719 ± 0.261, and the moisture content ranged from 38.712 ± 0.680 to 49.60 ± 9.06%. The mean electrical conductivity (EC) values of all treatments of matured compost ranged from 2.780 ± 0.542 to 3.51 ± 0.971 ds/m. The TN values of the matured compost ranged from 0.420 ± 0.379 to 0.754 ± 0.194 on a dry weight basis. The overall mean values of the C:N ratio for all the treatments were 11.60 which is within an acceptable range. A high amount of available P concentrations was observed in all compost treatments which ranged from 2.740 ± 0.190 to 2.940 ± 1.410 g/kg. Moreover, the concentrations of heavy metals in all treatments were below the permissible limit of different agencies and there was also no significant difference in the mean values of analysis of variance at (P < 0.05). Therefore, the prepared compost can be recommended for better agricultural purposes. Considering users' understanding of compost preparation as an opportunity, converting WH into compost is promising in terms of its rich supply and the possibility of preparing in the dry season where labor is abundant. Therefore, it can be one way of sustainably reducing WH adverse effects on the Lakeshore.

5.
Biomed Res Int ; 2022: 3824883, 2022.
Article in English | MEDLINE | ID: mdl-35711527

ABSTRACT

Organic matter and some selected metals (As, Ca, Cd, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, and Zn) were measured from water and sediment while plant samples from the inlet to the outlet sampling sites using standard procedures from three compartments (water, sediment, and macrophytes) of Yitamot wetland. Findings indicated that the mean concentration of COD in water was in the range of 5.25 mg/L and 208.25 mg/L and showed a significant and exponential decrease along the subsequent sampling sites (P < 0.05). The mean concentrations of K, As, Cd, and Cr (82.192 mg/kg, 0.730 mg/kg, 0.06 mg/kg, and 19.776 mg/kg, respectively) were significantly lower values in the outlet than in the inlet of the sediment samples (P < 0.05). All the metal concentrations in the aboveground tissue of macrophytes were significantly lower at the outlet sample site (P < 0.05) indicating that these compartments are contributing to the retention of metals and organic matter present in wastewater discharged in the wetland through sinks and conversions of these compounds. However, there was no significant removal effect for heavy metals like Fe, Zn, and As (P > 0.05). This is a pointer to the fact that natural wetlands can be used effectively for wastewater treatment with strong monitoring programs and ecological indicators for the sustainable management and conservation of the flora and fauna present in it.


Subject(s)
Metals, Heavy , Water Pollutants, Chemical , Cadmium , Environmental Monitoring/methods , Ethiopia , Geologic Sediments , Lead , Metals, Heavy/analysis , Water , Water Pollutants, Chemical/analysis , Wetlands , Zinc
6.
BMC Chem ; 16(1): 11, 2022 Mar 14.
Article in English | MEDLINE | ID: mdl-35287705

ABSTRACT

Excess agrochemicals input from agricultural activities and industrial effluent around Lake Ziway catchment can pose a serious threat on the lake ecosystem. Lake Ziway is a shallow freshwater lake found in the northern part of the Ethiopian Rift Valley. It is characterized as semi-arid to sub-humid type of climate. Expansions of the flower industry, widespread fisheries, intensive agricultural activities, fast population growth lead to deterioration of water quality and depletion of aquatic biota. The spatial and temporal variations of selected water quality parameters were evaluated using multivariate techniques. The data were collected from nine sampling stations during dry and wet seasonal basis for analysis of fifteen water quality parameters. The physicochemical parameters were measured in-situ with portable multimeter and nutrients were determined by following the standard procedures outlined in the American Public Health Association using UV/Visible spectrophotometer. Mean nutrient concentrations showed increasing trend in all seasons. These sites were also characterized by high electrical conductivity and total dissolved solid (TDS). All the nine sampling sites were categorized into three pollution levels according to their water quality features using cluster analysis (CA). Accordingly, sampling sites Fb and Ketar River (Kb) are highly and moderately polluted in both seasons, respectively. On the other hand, sampling sites at the center (C), Meki river mouth (Ma), Ketar river mouth (Ka), Meki River (Mb), Korekonch (Ko) and Fa in dry season and Ka, C, Ma, Ko, Bulbula river mouth (B) and Fa during wet season were less polluted. Principal component analysis (PCA) analysis also showed the pollutant sources were mainly from Fb during dry season Mb and Kb during wet season. The values of comprehensive pollution index illustrated the lake is moderately and slightly polluted in dry and wet seasons, respectively. Comparatively, the pollution status of the lake is high around floriculture effluent discharge site and at the two feeding rivers (Kb and Mb) due to increasing trends in agrochemical loads. In order to stop further deterioration of the lake water quality and to eventually restore the beneficial uses of the lake, management of agrochemicals in the lake catchments should be given urgent priority.

7.
BMC Chem ; 13(1): 107, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31428744

ABSTRACT

The main objective of this study is treatment and characterization of phosphorus from synthetic wastewater using aluminum electrodes in the electrocoagulation process. EC experimental setups were designed and different parameters were optimized. The maximum amounts of phosphorus removal efficiencies were observed at pH 7. The phosphorus removal efficiency increases from 85.16 to 97.65% as the temperature increases from 15 to 45 °C, beyond this temperature, there is small effect on removal efficiency. Pollutant removal efficiency increases with an increase in the electrolysis time. At lower initial concentrations the removal efficiencies reached to their maximum values while at the highest initial concentration, the phosphorus removal efficiency was decreased. The increase of current density improves the efficiency of phosphorus removal. Energy and aluminum consumption decreases with increasing initial concentration of phosphorus. Field Emission Scanning Electron Microscope (FESEM) image analysis demonstrated very fine structures for aluminum hydroxide/oxyhydroxides and aluminum phosphate. The existence of the different elemental composition in the sludge was proved by the help of Energy Dispersive X-ray Analysis (EDXS), indicating that the aluminum, oxygen and phosphorus were present in the product. From X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FT-IR) and Raman analyses of the sludge product, it is concluded that the chemical speciation of the by-products can be mostly aluminum hydroxide and aluminum phosphate.

SELECTION OF CITATIONS
SEARCH DETAIL
...