Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Oncotarget ; 8(62): 104913-104927, 2017 12 01.
Article in English | MEDLINE | ID: mdl-29285222

ABSTRACT

Oral squamous cell carcinoma (OSCC) is the most common oral and pharyngeal cancer, and is responsible of approximately 3% of cancers in men and 2% in women in the Western World, with increasing incidence rates in developing countries. Early detection by screening is necessary to prevent fatal disease because early, curable lesions are rarely symptomatic. The overall 5-yr survival rate is approximately 50% when surgery, radiation, or both are employed as treatment options, but lymph node involvement greatly influences this estimate, by decreasing the survival rate by about 50%. Here, we aimed at finding genetic signatures associated with lymph node metastasis in OSCC patients. We addressed this issue by whole transcriptome analysis through microarray expression profiling of a set of OSSC specimens of patients without lymph node involvement (10 patients, mean age ± SD 61.2±13.8, male 7, female 3) and with lymph node involvement (11 patients, mean age ± SD 62.1±15.1, male 8, female 3). We evidenced a gene expression signature associated to muscle contraction-related genes in specimens obtained from OSCC patients with lymph node involvement. This gene signature suggests the presence of myofibroblasts in tumor stoma of patients with lymph node involvement and emphasizes the decisive role played by myofibroblasts probably through their secretome in determining OSCC invasiveness.

2.
Oncotarget ; 7(29): 45444-45461, 2016 Jul 19.
Article in English | MEDLINE | ID: mdl-27323779

ABSTRACT

Altered functioning of the biological clock is involved in cancer onset and progression. MicroRNAs (miRNAs) interact with the clock genes modulating the function of genetically encoded molecular clockworks. Collaborative interactions may take place within the coding-noncoding RNA regulatory networks. We aimed to evaluate the cross-talk among miRNAs and clock genes in colorectal cancer (CRC). We performed an integrative analysis of miRNA-miRNA and miRNA-mRNA interactions on high-throughput molecular profiling of matched human CRC tissue and non-tumor mucosa, pinpointing core clock genes and their targeting miRNAs. Data obtained in silico were validated in CRC patients and human colon cancer cell lines. In silico we found severe alterations of clock gene-related coding-noncoding RNA regulatory networks in tumor tissues, which were later corroborated by the analysis of human CRC specimens and experiments performed in vitro. In conclusion, specific miRNAs target and regulate the transcription/translation of clock genes and clock gene-related miRNA-miRNA as well as mRNA-miRNA interactions are altered in colorectal cancer. Exploration of the interplay between specific miRNAs and genes, which are critically involved in the functioning of the biological clock, provides a better understanding of the importance of the miRNA-clock genes axis and its derangement in colorectal cancer.


Subject(s)
CLOCK Proteins/biosynthesis , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic/genetics , Gene Regulatory Networks/genetics , MicroRNAs/genetics , Aged , Aged, 80 and over , CLOCK Proteins/genetics , Cell Line, Tumor , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Female , Gene Expression Profiling , Humans , Male , Middle Aged , Transcriptome
3.
Chronobiol Int ; 33(2): 181-90, 2016.
Article in English | MEDLINE | ID: mdl-26980725

ABSTRACT

The biological hard-wiring of 24-hour rhythmicity relies on the circadian clock circuitry, made of peripheral oscillators operated by molecular clockworks and synchronized through humoral and neural outputs by central oscillators located in the hypothalamic suprachiasmatic nuclei. Metabolically active tissues, such as the liver, are entrained also by local cues represented by metabolic flux related to feeding. The mechanics of the molecular clockwork have been explored by studies using cell lines and wild type or genetically engineered mouse models. There is a compelling need to reduce the use of animals in experimental settings. The aim of our study was to evaluate the periodicity and dynamics of functioning of the hepatic clock gene machinery in human and mouse hepatic models. We compared the results obtained in human hepatoma cells (HepG2 cells) and in mouse liver, and a significant 24-hour rhythmic component was found for five clock genes in the HepG2 cells (Bmal1, Cry1, Per1, Per2, NR1D1) and for six clock genes in the mouse liver (Bmal1, Clock, Cry1, Per1, Per2, NR1D1). The amplitude of oscillation rendered by the cosine curve and the dynamics of expression rendered by the rate of change (the derivative of gene expression level with respect to time) were greater in the mouse liver than in the HepG2 cells for Bmal1, Per1, Per2 and NR1D1, and the cosine curve phase was different for many of them. In conclusion, the periodicity of expression of the clock genes showed similar patterns when the two experimental models were compared, whereas the dynamics of transcription in human hepatoma cells cultured in vitro were less vigorous and phased in a different way when compared to mouse hepatic tissue. The results support the reliability of the human hepatic in vitro model as an alternative to animal models only to study the periodicity of function of the molecular clockwork, but not to evaluate the dynamics of clock gene expression.


Subject(s)
CLOCK Proteins/genetics , Circadian Clocks/genetics , Circadian Rhythm/genetics , Gene Expression/physiology , Liver/metabolism , Suprachiasmatic Nucleus/metabolism , Animals , Cells, Cultured , Circadian Rhythm/physiology , Gene Expression Regulation , Humans , Male , Mice, Inbred C57BL , RNA, Messenger/metabolism , Reproducibility of Results
4.
Mol Cancer ; 15: 6, 2016 Jan 15.
Article in English | MEDLINE | ID: mdl-26768731

ABSTRACT

BACKGROUND: Circadian disruption and deranged molecular clockworks are involved in carcinogenesis. The cryptochrome genes (CRY1 and CRY2) encode circadian proteins important for the functioning of biological oscillators. Their expression in human colorectal cancer (CRC) and in colon cancer cell lines has not been evaluated so far. METHODS: We investigated CRY1 and CRY2 expression in fifty CRCs and in the CaCo2, HCT116, HT29, SW480 cell lines. RESULTS: CRY1 (p = 0.01) and CRY2 (p < 0.0001) expression was significantly changed in tumour tissue, as confirmed in a large independent CRC dataset. In addition, lower CRY1 mRNA levels were observed in patients in the age range of 62-74 years (p = 0.018), in female patients (p = 0.003) and in cancers located at the transverse colon (p = 0.008). Lower CRY2 levels were also associated with cancer location at the transverse colon (p = 0.007). CRC patients displaying CRY1 (p = 0.042) and CRY2 (p = 0.043) expression levels over the median were hallmarked by a poorer survival rate. Survey of selected colon cancer cell lines evidenced variable levels of cryptochrome genes expression and time-dependent changes in their mRNA levels. Moreover, they showed reduced apoptosis, increased proliferation and different response to 5-fluorouracil and oxaliplatin upon CRY1 and CRY2 ectopic expression. The relationship with p53 status came out as an additional layer of regulation: higher CRY1 and CRY2 protein levels coincided with a wild type p53 as in HCT116 cells and this condition only marginally affected the apoptotic and cell proliferation characteristics of the cells upon CRY ectopic expression. Conversely, lower CRY and CRY2 levels as in HT29 and SW480 cells coincided with a mutated p53 and a more robust apoptosis and proliferation upon CRY transfection. Besides, an heterogeneous pattern of ARNTL, WEE and c-MYC expression hallmarked the chosen colon cancer cell lines and likely influenced their phenotypic changes. CONCLUSION: Cryptochrome gene expression is altered in CRC, particularly in elderly subjects, female patients and cancers located at the transverse colon, affecting overall survival. Altered CRY1 and CRY2 expression patterns and the interplay with the genetic landscape in colon cancer cells may underlie phenotypic divergence that could influence disease behavior as well as CRC patients survival and response to chemotherapy.


Subject(s)
Colorectal Neoplasms/genetics , Cryptochromes/genetics , Gene Expression Regulation, Neoplastic , Aged , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Apoptosis/genetics , Cell Cycle/drug effects , Cell Cycle/genetics , Cell Line, Tumor , Cell Proliferation/drug effects , Colorectal Neoplasms/pathology , Cryptochromes/metabolism , Female , Gene Dosage , Gene Expression Regulation, Neoplastic/drug effects , Humans , In Situ Hybridization, Fluorescence , Male , RNA, Messenger/genetics , RNA, Messenger/metabolism , Time Factors , Transfection
5.
BMJ Case Rep ; 20112011 Oct 20.
Article in English | MEDLINE | ID: mdl-22675054

ABSTRACT

Epidermoid cysts are benign conditions that are thought to derive from abnormally situated ectodermal inclusions in the oral cavity. They are generally found in hands, fingers, feet, ovaries and testicles but in oral cavity they represent a very rare event. This is the first case of an intraosseous epidermoid cyst situated in the hard palate. Healing was uneventful and there was no sign of recurrence in 2-years follow-up.


Subject(s)
Epidermal Cyst/surgery , Mouth Abnormalities/surgery , Palate, Hard/surgery , Adult , Epidermal Cyst/congenital , Epidermal Cyst/diagnostic imaging , Female , Humans , Incidental Findings , Mouth Abnormalities/diagnostic imaging , Palate, Hard/abnormalities , Palate, Hard/diagnostic imaging , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...