Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 14: 1240707, 2023.
Article in English | MEDLINE | ID: mdl-37860140

ABSTRACT

Food chain contamination by soil lead (Pb), beginning with Pb uptake by leafy vegetables, is a threat to food safety and poses a potential risk to human health. This study highlights the importance of two ecologically different earthworm species (the anecic species Amynthas aspergillum and the epigeic species Eisenia fetida) as the driving force of microbial hotspots to enhance Pb accumulation in the leafy vegetable Brassica campestris at different Pb contamination levels (0, 100, 500, and 1,000 mg·kg-1). The fingerprints of phospholipid fatty acids (PLFAs) were employed to reveal the microbial mechanism of Pb accumulation involving earthworm-plant interaction, as PLFAs provide a general profile of soil microbial biomass and community structure. The results showed that Gram-positive (G+) bacteria dominated the microbial community. At 0 mg·kg-1 Pb, the presence of earthworms significantly reduced the total PLFAs. The maximum total of PLFAs was found at 100 mg·kg-1 Pb with E. fetida inoculation. A significant shift in the bacterial community was observed in the treatments with E. fetida inoculation at 500 and 1,000 mg·kg-1 Pb, where the G+/G- bacteria ratio was significantly decreased compared to no earthworm inoculation. Principal component analysis (PCA) showed that E. fetida had a greater effect on soil microbial hotspots than A. aspergillum, thus having a greater effect on the Pb uptake by B. campestris. Redundancy analysis (RDA) showed that soil microbial biomass and structure explained 43.0% (R2 = 0.53) of the total variation in Pb uptake by B. campestris, compared to 9.51% of microbial activity. G- bacteria explained 23.2% of the total variation in the Pb uptake by B. campestris, significantly higher than the other microbes. The Mantel test showed that microbial properties significantly influenced Pb uptake by B. campestris under the driving force of earthworms. E. fetida inoculation was favorable for the G- bacterial community, whereas A. aspergillum inoculation was favorable for the fungal community. Both microbial communities facilitated the entry of Pb into the vegetable food chain system. This study delivers novel evidence and meaningful insights into how earthworms prime the microbial mechanism of Pb uptake by leafy vegetables by influencing soil microbial biomass and community composition. Comprehensive metagenomics analysis can be employed in future studies to identify the microbial strains promoting Pb migration and develop effective strategies to mitigate Pb contamination in food chains.

2.
Environ Sci Pollut Res Int ; 30(54): 114739-114755, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37906331

ABSTRACT

Environmental plastic wastes are continuously degraded into microplastics (MPs) and nanoplastics (NPs); the latter are more potentially harmful to organisms and human health as their smaller size and higher surface-to-volume ratio. Previous reviews on NPs mainly concentrate on specific aspects, such as sources, environmental behavior, and toxicological effects, but few focused on NPs-related scientific publications from a global point of view. Therefore, this bibliometric study aims to summarize the research themes and trends on NPs and also propose potential directions for future inquiry. Related papers were downloaded from the Web of Science Core Collection database on NPs published from 2008 to 2021, and then retrieved information was analyzed using CiteSpace 6.1 R2 and VOSviewer (version 1.6.). Research on NPs mainly involved environmental behaviors, toxicological effects, identification and extraction of NPs, whereas aquatic environments, especially marine systems, attracted more attentions from these scientists compare to terrestrial environments. Furthermore, the adsorption behavior of pollutants by NPs and the toxicological effects of organisms exposed to NPs are the present hotspots, while the regulation of humic acid (HA) on NPs behaviors and the environmental behavior of NPs in freshwater, like rivers and lakes, are the frontier areas of research. This study also explored the possible opportunities and challenges that may be faced in NPs research, which provide a valuable summary and outlook for ongoing NPs-related research, which may be of intrigue and noteworthiness for relevant researchers.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Adsorption , Bibliometrics , Lakes
SELECTION OF CITATIONS
SEARCH DETAIL
...