Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 121(17): 172501, 2018 Oct 26.
Article in English | MEDLINE | ID: mdl-30411940

ABSTRACT

Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort. Relating nuclear decay rates to high-energy, beyond the standard model (BSM) physics requires detailed knowledge of nonperturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the leading order π^{-}→π^{+} exchange diagrams. Utilizing our result and taking advantage of effective field theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which may then be used as input for nuclear many-body calculations of the relevant experimental decays. Contributions from short-range operators may prove to be equally important to, or even more important than, those from long-range Majorana neutrino exchange.

2.
Phys Rev Lett ; 113(25): 252001, 2014 Dec 19.
Article in English | MEDLINE | ID: mdl-25554875

ABSTRACT

We present the results of lattice QCD calculations of the magnetic moments of the lightest nuclei, the deuteron, the triton, and ^{3}He, along with those of the neutron and proton. These calculations, performed at quark masses corresponding to m_{π}∼800 MeV, reveal that the structure of these nuclei at unphysically heavy quark masses closely resembles that at the physical quark masses. In particular, we find that the magnetic moment of ^{3}He differs only slightly from that of a free neutron, as is the case in nature, indicating that the shell-model configuration of two spin-paired protons and a valence neutron captures its dominant structure. Similarly a shell-model-like moment is found for the triton, µ_{^{3}H}∼µ_{p}. The deuteron magnetic moment is found to be equal to the nucleon isoscalar moment within the uncertainties of the calculations. Furthermore, deviations from the Schmidt limits are also found to be similar to those in nature for these nuclei. These findings suggest that at least some nuclei at these unphysical quark masses are describable by a phenomenological nuclear shell model.

SELECTION OF CITATIONS
SEARCH DETAIL
...