Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 242(3): 1084-1097, 2024 May.
Article in English | MEDLINE | ID: mdl-38503686

ABSTRACT

Arabidopsis thaliana (Arabidopsis) shoot architecture is largely determined by the pattern of axillary buds that grow into lateral branches, the regulation of which requires integrating both local and systemic signals. Nodal explants - stem explants each bearing one leaf and its associated axillary bud - are a simplified system to understand the regulation of bud activation. To explore signal integration in bud activation, we characterised the growth dynamics of buds in nodal explants in key mutants and under different treatments. We observed that isolated axillary buds activate in two genetically and physiologically separable phases: a slow-growing lag phase, followed by a switch to rapid outgrowth. Modifying BRANCHED1 expression or the properties of the auxin transport network, including via strigolactone application, changed the length of the lag phase. While most interventions affected only the length of the lag phase, strigolactone treatment and a second bud also affected the rapid growth phase. Our results are consistent with the hypothesis that the slow-growing lag phase corresponds to the time during which buds establish canalised auxin transport out of the bud, after which they enter a rapid growth phase. Our work also hints at a role for auxin transport in influencing the maximum growth rate of branches.


Subject(s)
Arabidopsis , Heterocyclic Compounds, 3-Ring , Indoleacetic Acids , Indoleacetic Acids/pharmacology , Indoleacetic Acids/metabolism , Arabidopsis/metabolism , Plant Shoots/metabolism , Lactones/pharmacology , Lactones/metabolism , Gene Expression Regulation, Plant
2.
PLoS Genet ; 15(3): e1008023, 2019 03.
Article in English | MEDLINE | ID: mdl-30865619

ABSTRACT

The shoot systems of plants are built by the action of the primary shoot apical meristem, established during embryogenesis. In the axil of each leaf produced by the primary meristem, secondary axillary shoot apical meristems are established. The dynamic regulation of the activity of these axillary meristems gives shoot systems their extraordinary plasticity of form. The ability of plants to activate or repress these axillary meristems appropriately requires communication between meristems that is environmentally sensitive. The transport network of the plant hormone auxin has long been implicated as a central player in this tuneable communication system, with other systemically mobile hormones, such as strigolactone and cytokinin, acting in part by modulating auxin transport. Until recently, the polar auxin transport stream, which provides a high conductance auxin transport route down stems dominated by the auxin export protein PIN-FORMED1 (PIN1), has been the focus for understanding long range auxin transport in the shoot. However, recently additional auxin exporters with important roles in the shoot have been identified, including PIN3, PIN4 and PIN7. These proteins contribute to a wider less polar stem auxin transport regime, which we have termed connective auxin transport (CAT), because of its role in communication across the shoot system. Here we present a genetic analysis of the role of CAT in shoot branching. We demonstrate that in Arabidopsis, CAT plays an important role in strigolactone-mediated shoot branching control, with the triple pin3pin4pin7 mutant able to suppress partially the highly branched phenotype of strigolactone deficient mutants. In contrast, the branchy phenotype of mutants lacking the axillary meristem-expressed transcription factor, BRANCHED1 (BRC1) is unaffected by pin3pin4pin7. We further demonstrate that mutation in the ABCB19 auxin export protein, which like PIN3 PIN4 and PIN7 is widely expressed in stems, has very different effects, implicating ABCB19 in auxin loading at axillary bud apices.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Indoleacetic Acids/metabolism , Lactones/metabolism , Transcription Factors/metabolism , ATP-Binding Cassette Transporters/genetics , ATP-Binding Cassette Transporters/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport, Active , Gene Expression Regulation, Developmental , Gene Expression Regulation, Plant , Genes, Plant , Kinetics , Membrane Transport Proteins/genetics , Membrane Transport Proteins/metabolism , Meristem/growth & development , Meristem/metabolism , Models, Biological , Mutation , Phenotype , Plant Growth Regulators/metabolism , Plant Shoots/growth & development , Plant Shoots/metabolism , Plant Stems/growth & development , Plant Stems/metabolism , Plants, Genetically Modified , Transcription Factors/genetics
3.
Nature ; 563(7733): 652-656, 2018 11.
Article in English | MEDLINE | ID: mdl-30464344

ABSTRACT

The strigolactones, a class of plant hormones, regulate many aspects of plant physiology. In the inhibition of shoot branching, the α/ß hydrolase D14-which metabolizes strigolactone-interacts with the F-box protein D3 to ubiquitinate and degrade the transcription repressor D53. Despite the fact that multiple modes of interaction between D14 and strigolactone have recently been determined, how the hydrolase functions with D3 to mediate hormone-dependent D53 ubiquitination remains unknown. Here we show that D3 has a C-terminal α-helix that can switch between two conformational states. The engaged form of this α-helix facilitates the binding of D3 and D14 with a hydrolysed strigolactone intermediate, whereas the dislodged form can recognize unmodified D14 in an open conformation and inhibits its enzymatic activity. The D3 C-terminal α-helix enables D14 to recruit D53 in a strigolactone-dependent manner, which in turn activates the hydrolase. By revealing the structural plasticity of the SCFD3-D14 ubiquitin ligase, our results suggest a mechanism by which the E3 coordinates strigolactone signalling and metabolism.


Subject(s)
Heterocyclic Compounds, 3-Ring/metabolism , Lactones/metabolism , Oryza/enzymology , Oryza/metabolism , Plant Growth Regulators/metabolism , SKP Cullin F-Box Protein Ligases/chemistry , SKP Cullin F-Box Protein Ligases/metabolism , Signal Transduction , Heterocyclic Compounds, 3-Ring/chemistry , Lactones/chemistry , Models, Molecular , Multienzyme Complexes/antagonists & inhibitors , Multienzyme Complexes/chemistry , Multienzyme Complexes/metabolism , Plant Growth Regulators/chemistry , Plant Proteins/chemistry , Plant Proteins/metabolism , Protein Binding , Protein Structure, Secondary , SKP Cullin F-Box Protein Ligases/antagonists & inhibitors , Structure-Activity Relationship , Ubiquitin , Ubiquitination
4.
Elife ; 62017 10 24.
Article in English | MEDLINE | ID: mdl-29064367

ABSTRACT

In Arabidopsis, development during flowering is coordinated by transport of the hormone auxin mediated by polar-localized PIN-FORMED1 (AtPIN1). However Arabidopsis has lost a PIN clade sister to AtPIN1, Sister-of-PIN1 (SoPIN1), which is conserved in flowering plants. We previously proposed that the AtPIN1 organ initiation and vein patterning functions are split between the SoPIN1 and PIN1 clades in grasses. Here we show that in the grass Brachypodium sopin1 mutants have organ initiation defects similar to Arabidopsis atpin1, while loss of PIN1 function in Brachypodium has little effect on organ initiation but alters stem growth. Heterologous expression of Brachypodium SoPIN1 and PIN1b in Arabidopsis provides further evidence of functional specificity. SoPIN1 but not PIN1b can mediate flower formation in null atpin1 mutants, although both can complement a missense allele. The behavior of SoPIN1 and PIN1b in Arabidopsis illustrates how membrane and tissue-level accumulation, transport activity, and interaction contribute to PIN functional specificity.


Subject(s)
Arabidopsis/growth & development , Brachypodium/growth & development , Indoleacetic Acids/metabolism , Membrane Transport Proteins/metabolism , Plant Growth Regulators/metabolism , Plant Proteins/metabolism , Genetic Complementation Test , Membrane Transport Proteins/genetics , Mutation , Plant Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...