Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Alcohol Clin Exp Res (Hoboken) ; 48(6): 1025-1035, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38631877

ABSTRACT

BACKGROUND: Adolescence is a sensitive stage of oral microbial development that often coincides with the initiation and escalation of alcohol use. Thus, adolescents may be particularly susceptible to alcohol-induced alterations in the oral microbiome, though minimal research has been done in this area. Understanding the connection between the oral microbiome and alcohol use during adolescence is important to understand fully the biological consequences of alcohol use to mitigate potential adverse outcomes. METHODS: Saliva samples were collected from adolescents aged 17-19 who used alcohol heavily (n = 21, 52.4% female) and those who did not use alcohol or any other substances (n = 18, 44.4% female). We utilized 16S rRNA sequencing to examine differences in microbial diversity and composition between the groups. RESULTS: For alpha diversity, evenness was significantly lower in the drinking group than the control group as indicated by Pielou's evenness, Shannon, and Simpson indices. There were no statistically significant findings for beta diversity. Differential abundance analyses revealed higher abundances of Rothia and Corynebacterium in the alcohol-using group using both centered-log-ratio and relative abundance normalization. These genera are known for their high capacity to convert alcohol into acetaldehyde, a toxic metabolite reported to play a role in the neurobiological effects of alcohol. An unclassified Clostridia UCG-014, Streptobacillus, Comamonas, unclassified Lachnospiraceae, and Parvimonas were also identified as significantly different between groups when using only one of the normalization techniques. CONCLUSIONS: This is the first study designed specifically to compare the oral microbiome of adolescents who use alcohol with that of control participants. Our findings reveal distinct alcohol-related differences in microbial composition and taxon abundance, emphasizing the importance of understanding the impact on the oral microbiome of alcohol use during adolescence. Because the oral microbiome is malleable, this study provides foundational work for future prevention and intervention studies.

2.
Antibiotics (Basel) ; 12(5)2023 May 10.
Article in English | MEDLINE | ID: mdl-37237790

ABSTRACT

Bacterial exposure to antibiotic concentrations below the minimum inhibitory concentration (MIC) may result in a selection window allowing for the rapid evolution of resistance. These sub-MIC concentrations are commonly found in soils and water supplies in the greater environment. This study aimed to evaluate the adaptive genetic changes in Klebsiella pneumoniae 43816 after prolonged but increasing sub-MIC levels of the common antibiotic cephalothin over a fourteen-day period. Over the course of the experiment, antibiotic concentrations increased from 0.5 µg/mL to 7.5 µg/mL. At the end of this extended exposure, the final adapted bacterial culture exhibited clinical resistance to both cephalothin and tetracycline, altered cellular and colony morphology, and a highly mucoid phenotype. Cephalothin resistance exceeded 125 µg/mL without the acquisition of beta-lactamase genes. Whole genome sequencing identified a series of genetic changes that could be mapped over the fourteen-day exposure period to the onset of antibiotic resistance. Specifically, mutations in the rpoB subunit of RNA Polymerase, the tetR/acrR regulator, and the wcaJ sugar transferase each fix at specific timepoints in the exposure regimen where the MIC susceptibility dramatically increased. These mutations indicate that alterations in the secretion of colanic acid and attachment of colonic acid to LPS may contribute to the resistant phenotype. These data demonstrate that very low sub-MIC concentrations of antibiotics can have dramatic impacts on the bacterial evolution of resistance. Additionally, this study demonstrates that beta-lactam resistance can be achieved through sequential accumulation of specific mutations without the acquisition of a beta-lactamase gene.

3.
Antibiotics (Basel) ; 11(7)2022 Jul 20.
Article in English | MEDLINE | ID: mdl-35884232

ABSTRACT

Background: Acinetobacter spp. have emerged as troublesome pathogens due to their multi-drug resistance. The majority of the work to date has focused on the antibiotic resistance profile of Acinetobacter baumannii. Although A. calcoaceticus strains are isolated in the hospital setting, limited information is available on these closely related species. Methods & Results: The computational analysis of antibiotic resistance genes in 1441 Acinetobacter genomes revealed that A. calcoaceticus harbored a similar repertoire of multi-drug efflux pump and beta-lactam resistance genes as A. baumannii, leading us to speculate that A. calcoaceticus would have a similar antibiotic resistance profile to A. baumannii. To profile the resistance patterns of A. calcoaceticus, strains were examined by Kirby−Bauer disk diffusion and phenotypic microarrays. We found that Acinetobacter strains were moderately to highly resistant to certain antibiotics within fluoroquinolones, aminoglycosides, tetracyclines, and other antibiotic classes. These data indicate that A. calcoaceticus has a similar antibiotic resistance profile as A. baumannii ATCC 19606. We also identified that all Acinetobacter species were sensitive to 5-fluoroorotic acid, novobiocin, and benzethonium chloride. Conclusion: Collectively, these data provide new insights into the antibiotic resistance in A. calcoaceticus and identify several antibiotics that could be beneficial in treating Acinetobacter infections.

4.
Front Physiol ; 13: 880024, 2022.
Article in English | MEDLINE | ID: mdl-35685287

ABSTRACT

Background: The gastrointestinal tract has been speculated to serve as a reservoir for Acinetobacter, however little is known about the ecological fitness of Acinetobacter strains in the gut. Likewise, not much is known about the ability of Acinetobacter to consume dietary, or host derived nutrients or their capacity to modulate host gene expression. Given the increasing prevalence of Acinetobacter in the clinical setting, we sought to characterize how A. calcoaceticus responds to gut-related stressors and identify potential microbe-host interactions. Materials and Methods: To accomplish these aims, we grew clinical isolates and commercially available strains of A. calcoaceticus in minimal media with different levels of pH, osmolarity, ethanol and hydrogen peroxide. Utilization of nutrients was examined using Biolog phenotypic microarrays. To examine the interactions of A. calcoaceticus with the host, inverted murine organoids where the apical membrane is exposed to bacteria, were incubated with live A. calcoaceticus, and gene expression was examined by qPCR. Results: All strains grew modestly at pH 6, 5 and 4; indicating that these strains could tolerate passage through the gastrointestinal tract. All strains had robust growth in 0.1 and 0.5 M NaCl concentrations which mirror the small intestine, but differences were observed between strains in response to 1 M NaCl. Additionally, all strains tolerated up to 5% ethanol and 0.1% hydrogen peroxide. Biolog phenotypic microarrays revealed that A. calcoaceticus strains could use a range of nutrient sources, including monosaccharides, disaccharides, polymers, glycosides, acids, and amino acids. Interestingly, the commercially available A. calcoaceticus strains and one clinical isolate stimulated the pro-inflammatory cytokines Tnf, Kc, and Mcp-1 while all strains suppressed Muc13 and Muc2. Conclusion: Collectively, these data demonstrate that A. calcoaceticus is well adapted to dealing with environmental stressors of the gastrointestinal system. This data also points to the potential for Acinetobacter to influence the gut epithelium.

5.
Sci Rep ; 12(1): 8456, 2022 05 19.
Article in English | MEDLINE | ID: mdl-35589783

ABSTRACT

Mucin-degrading microbes are known to harbor glycosyl hydrolases (GHs) which cleave specific glycan linkages. Although several microbial species have been identified as mucin degraders, there are likely many other members of the healthy gut community with the capacity to degrade mucins. The aim of the present study was to systematically examine the CAZyme mucin-degrading profiles of the human gut microbiota. Within the Verrucomicrobia phylum, all Akkermansia glycaniphila and muciniphila genomes harbored multiple gene copies of mucin-degrading GHs. The only representative of the Lentisphaerae phylum, Victivallales, harbored a GH profile that closely mirrored Akkermansia. In the Actinobacteria phylum, we found several Actinomadura, Actinomyces, Bifidobacterium, Streptacidiphilus and Streptomyces species with mucin-degrading GHs. Within the Bacteroidetes phylum, Alistipes, Alloprevotella, Bacteroides, Fermenitomonas Parabacteroides, Prevotella and Phocaeicola species had mucin degrading GHs. Firmicutes contained Abiotrophia, Blautia, Enterococcus, Paenibacillus, Ruminococcus, Streptococcus, and Viridibacillus species with mucin-degrading GHs. Interestingly, far fewer mucin-degrading GHs were observed in the Proteobacteria phylum and were found in Klebsiella, Mixta, Serratia and Enterobacter species. We confirmed the mucin-degrading capability of 23 representative gut microbes using a chemically defined media lacking glucose supplemented with porcine intestinal mucus. These data greatly expand our knowledge of microbial-mediated mucin degradation within the human gut microbiota.


Subject(s)
Gastrointestinal Microbiome , Mucins , Animals , Clostridiales/metabolism , Humans , Mucins/metabolism , Polysaccharides/metabolism , Swine , Verrucomicrobia/metabolism
6.
Leukemia ; 36(7): 1907-1915, 2022 07.
Article in English | MEDLINE | ID: mdl-35513703

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective immunotherapy for various hematologic malignancies, predominantly through potent graft-versus-leukemia (GVL) effect. However, the mortality after allo-HCT is because of relapse of primary malignancy and followed by graft-vs-host-disease (GVHD) as a major cause of transplant-related mortality. Hence, strategies to limit GVHD while preserving the GVL effect are highly desirable. Ceramide, which serves a central role in sphingolipid metabolism, is generated by ceramide synthases (CerS1-6). In this study, we found that genetic or pharmacologic targeting of CerS6 prevented and reversed chronic GVHD (cGVHD). Furthermore, specific inhibition of CerS6 with ST1072 significantly ameliorated acute GVHD (aGVHD) while preserving the GVL effect, which differed from FTY720 that attenuated aGVHD but impaired GVL activity. At the cellular level, blockade of CerS6 restrained donor T cells from migrating into GVHD target organs and preferentially reduced activation of donor CD4 T cells. At the molecular level, CerS6 was required for optimal TCR signaling, CD3/PKCθ co-localization, and subsequent N-RAS activation and ERK signaling, especially on CD4+ T cells. The current study provides rationale and means for targeting CerS6 to control GVHD and leukemia relapse, which would enhance the efficacy of allo-HCT as an immunotherapy for hematologic malignancies in the clinic.


Subject(s)
Graft vs Host Disease , Hematologic Neoplasms , Hematopoietic Stem Cell Transplantation , Leukemia , Ceramides/pharmacology , GTP Phosphohydrolases/metabolism , Graft vs Host Disease/prevention & control , Graft vs Leukemia Effect , Hematologic Neoplasms/therapy , Hematopoietic Stem Cell Transplantation/adverse effects , Humans , MAP Kinase Signaling System , Membrane Proteins/metabolism , Oxidoreductases , Recurrence , T-Lymphocytes , Transplantation, Homologous
7.
Appl Environ Microbiol ; 88(4): e0223721, 2022 02 22.
Article in English | MEDLINE | ID: mdl-34936835

ABSTRACT

Multiple studies have found that streptococci have a synergistic relationship with Candida species, but the details of these interactions are still being discovered. Candida species are covered by mannan, a polymer of mannose, which could serve as a carbon source for certain microbes. We hypothesized that streptococci that possess mannan-degrading glycosyl hydrolases would be able to enzymatically cleave mannose residues, which could serve as a primary carbohydrate source to support growth. We analyzed 90 streptococcus genomes to predict the capability of streptococci to transport and utilize mannose and to degrade diverse mannose linkages found on mannan. The genome analysis revealed mannose transporters and downstream pathways in most streptococci, but only <50% of streptococci harbored the glycosyl hydrolases required for mannan degradation. To confirm the ability of streptococci to use mannose or mannan, we grew 6 representative streptococci in a chemically defined medium lacking glucose supplemented with mannose, yeast extract, or purified mannan isolated from Candida and Saccharomyces strains. Although all tested Streptococcus strains could use mannose, Streptococcus salivarius and Streptococcus agalactiae, which did not possess mannan-degrading glycosyl hydrolases, could not use yeast extract or mannan to enhance their growth. In contrast, we found that Streptococcus mitis, Streptococcus parasanguinis, Streptococcus sanguinis, and Streptococcus pyogenes possessed the necessary glycosyl hydrolases to use yeast extract and isolated mannan, which promoted robust growth. Our data indicate that several streptococci are capable of degrading fungal mannans and harvesting mannose for energy. IMPORTANCE This work highlights a previously undescribed aspect of streptococcal Candida interactions. Our work identifies that certain streptococci possess the enzymes required to degrade mannan, and through this mechanism, they can release mannose residues from the cell wall of fungal species and use them as a nutrient source. We speculate that streptococci that can degrade fungal mannan may have a competitive advantage for colonization. This finding has broad implications for human health, as streptococci and Candida are found at multiple body sites.


Subject(s)
Candida , Mannans , Candida/metabolism , Cell Wall/metabolism , Humans , Mannans/metabolism , Mannose , Streptococcus/metabolism
8.
Front Microbiol ; 12: 745469, 2021.
Article in English | MEDLINE | ID: mdl-34899632

ABSTRACT

Background: Bacteroidetes are the most common bacterial phylum in the mammalian intestine and the effects of several Bacteroides spp. on multiple facets of host physiology have been previously described. Of the Bacteroides spp., Bacteroides ovatus has recently garnered attention due to its beneficial effects in the context of intestinal inflammation. In this study, we aimed to examine model host intestinal physiological conditions and dietary modifications to characterize their effects on B. ovatus growth. Methods and Results: Using Biolog phenotypic microarrays, we evaluated 62 primary carbon sources and determined that B. ovatus ATCC 8384 can use the following carbohydrates as primary carbon sources: 10 disaccharides, 4 trisaccharides, 4 polysaccharides, 4 polymers, 3 L-linked sugars, 6 D-linked sugars, 5 amino-sugars, 6 alcohol sugars, and 15 organic acids. Proteomic profiling of B. ovatus bacteria revealed that a significant portion of the B. ovatus proteome contains proteins important for metabolism. Among the proteins, we found glycosyl hydrolase (GH) familes GH2, GH5, GH20, GH 43, GH88, GH92, and GH95. We also identified multiple proteins with antioxidant properties and reasoned that these proteins may support B. ovatus growth in the GI tract. Upon further testing, we showed that B. ovatus grew robustly in various pH, osmolarity, bile, ethanol, and H2O2 concentrations; indicating that B. ovatus is a well-adapted gut microbe. Conclusion: Taken together, we have demonstrated that key host and diet-derived changes in the intestinal environment influence B. ovatus growth. These data provide the framework for future work toward understanding how diet and lifestyle interventions may promote a beneficial environment for B. ovatus growth.

9.
Front Immunol ; 12: 705484, 2021.
Article in English | MEDLINE | ID: mdl-34659198

ABSTRACT

Allogeneic hematopoietic cell transplantation (allo-HCT) is an effective therapeutic procedure to treat hematological malignancies. However, the benefit of allo-HCT is limited by a major complication, chronic graft-versus-host disease (cGVHD). Since transmembrane and secretory proteins are generated and modified in the endoplasmic reticulum (ER), the ER stress response is of great importance to secretory cells including B cells. By using conditional knock-out (KO) of XBP-1, IRE-1α or both specifically on B cells, we demonstrated that the IRE-1α/XBP-1 pathway, one of the major ER stress response mediators, plays a critical role in B cell pathogenicity on the induction of cGVHD in murine models of allo-HCT. Endoribonuclease activity of IRE-1α activates XBP-1 signaling by converting unspliced XBP-1 (XBP-1u) mRNA into spliced XBP-1 (XBP-1s) mRNA but also cleaves other ER-associated mRNAs through regulated IRE-1α-dependent decay (RIDD). Further, ablation of XBP-1s production leads to unleashed activation of RIDD. Therefore, we hypothesized that RIDD plays an important role in B cells during cGVHD development. In this study, we found that the reduced pathogenicity of XBP-1 deficient B cells in cGVHD was reversed by RIDD restriction in IRE-1α kinase domain KO mice. Restraining RIDD activity per se in B cells resulted in an increased severity of cGVHD. Besides, inhibition of RIDD activity compromised B cell differentiation and led to dysregulated expression of MHC II and costimulatory molecules such as CD86, CD40, and ICOSL in B cells. Furthermore, restraining the RIDD activity without affecting XBP-1 splicing increased B cell ability to induce cGVHD after allo-HCT. These results suggest that RIDD is an important mediator for reducing cGVHD pathogenesis through targeting XBP-1s.


Subject(s)
B-Lymphocytes/immunology , Endoribonucleases/immunology , Graft vs Host Disease/immunology , Hematopoietic Stem Cell Transplantation , Protein Serine-Threonine Kinases/immunology , Proteolysis , X-Box Binding Protein 1/immunology , Allografts , Animals , Chronic Disease , Endoplasmic Reticulum Stress/genetics , Endoplasmic Reticulum Stress/immunology , Endoribonucleases/genetics , Graft vs Host Disease/genetics , Mice , Mice, Inbred BALB C , Mice, Transgenic , Protein Serine-Threonine Kinases/genetics , Signal Transduction , X-Box Binding Protein 1/genetics
10.
JCI Insight ; 6(3)2021 02 08.
Article in English | MEDLINE | ID: mdl-33554953

ABSTRACT

Graft-versus-host disease (GVHD) is a pathological process caused by an exaggerated donor lymphocyte response to host antigens after allogeneic hematopoietic cell transplantation (allo-HCT). Donor T cells undergo extensive clonal expansion and differentiation, which culminate in damage to recipient target organs. Damage to the gastrointestinal tract is a main contributor to morbidity and mortality. The loss of diversity among intestinal bacteria caused by pretransplant conditioning regimens leads to an outgrowth of opportunistic pathogens and exacerbated GVHD after allo-HCT. Using murine models of allo-HCT, we found that an increase of Bacteroides in the intestinal microbiota of the recipients was associated with reduced GVHD in mice given fecal microbial transplantation. Administration of Bacteroides fragilis through oral gavage increased gut microbiota diversity and beneficial commensal bacteria and significantly ameliorated acute and chronic GVHD development. Preservation of gut integrity following B. fragilis exposure was likely attributed to increased short chain fatty acids, IL-22, and regulatory T cells, which in turn improved gut tight junction integrity and reduced inflammatory cytokine production of pathogenic T cells. The current study provides a proof of concept that a single strain of commensal bacteria can be a safe and effective means to protect gut integrity and ameliorate GVHD after allo-HCT.


Subject(s)
Bacteroides fragilis/immunology , Gastrointestinal Microbiome/immunology , Graft vs Host Disease/prevention & control , Allografts , Animals , Disease Models, Animal , Fecal Microbiota Transplantation , Graft vs Host Disease/immunology , Graft vs Host Disease/microbiology , Graft vs Leukemia Effect/immunology , Hematopoietic Stem Cell Transplantation/adverse effects , Isoantigens/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Mice, Inbred DBA , T-Lymphocytes/immunology , Tumor Cells, Cultured
11.
Cell Mol Immunol ; 18(3): 632-643, 2021 03.
Article in English | MEDLINE | ID: mdl-33500563

ABSTRACT

Stimulator of interferon genes (STING)-mediated innate immune activation plays a key role in tumor- and self-DNA-elicited antitumor immunity and autoimmunity. However, STING can also suppress tumor immunity and autoimmunity. STING signaling in host nonhematopoietic cells was reported to either protect against or promote graft-versus-host disease (GVHD), a major complication of allogeneic hematopoietic cell transplantation (allo-HCT). Host hematopoietic antigen-presenting cells (APCs) play key roles in donor T-cell priming during GVHD initiation. However, how STING regulates host hematopoietic APCs after allo-HCT remains unknown. We utilized murine models of allo-HCT to assess the role of STING in hematopoietic APCs. STING-deficient recipients developed more severe GVHD after major histocompatibility complex-mismatched allo-HCT. Using bone marrow chimeras, we found that STING deficiency in host hematopoietic cells was primarily responsible for exacerbating the disease. Furthermore, STING on host CD11c+ cells played a dominant role in suppressing allogeneic T-cell responses. Mechanistically, STING deficiency resulted in increased survival, activation, and function of APCs, including macrophages and dendritic cells. Consistently, constitutive activation of STING attenuated the survival, activation, and function of APCs isolated from STING V154M knock-in mice. STING-deficient APCs augmented donor T-cell expansion, chemokine receptor expression, and migration into intestinal tissues, resulting in accelerated/exacerbated GVHD. Using pharmacologic approaches, we demonstrated that systemic administration of a STING agonist (bis-(3'-5')-cyclic dimeric guanosine monophosphate) to recipient mice before transplantation significantly reduced GVHD mortality. In conclusion, we revealed a novel role of STING in APC activity that dictates T-cell allogeneic responses and validated STING as a potential therapeutic target for controlling GVHD after allo-HCT.


Subject(s)
Antigen-Presenting Cells/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Graft vs Host Disease/pathology , Hematopoietic Stem Cell Transplantation/adverse effects , Intestines/pathology , Membrane Proteins/physiology , Animals , Female , Graft vs Host Disease/etiology , Graft vs Host Disease/metabolism , Intestines/immunology , Intestines/metabolism , Macrophages/immunology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Transplantation, Homologous
12.
Cell Rep ; 33(4): 108316, 2020 10 27.
Article in English | MEDLINE | ID: mdl-33113360

ABSTRACT

Graft-versus-host disease (GVHD) limits the success of allogeneic hematopoietic cell transplantation (allo-HCT). Lysosomal acid lipase (LAL) mediates the intrinsic lipolysis of cells to generate free fatty acids (FFAs), which play an essential role in the development, proliferation, and function of T cells. Here, we find that LAL is essential for donor T cells to induce GVHD in murine models of allo-HCT. Specifically, LAL is required for donor T cell survival, differentiation, and alloreactivity in GVHD target organs, but not in lymphoid organs. LAL induces the differentiation of donor T cells toward GVHD pathogenic Th1/Tc1 and Th17 while suppressing regulatory T cell generation. LAL-/- T cells succumb to oxidative stress and become anergic in target organs. Pharmacologically targeting LAL effectively prevents GVHD development while preserving the GVL activity. Thus, the present study reveals the role of LAL in T cell alloresponse and pathogenicity and validates LAL as a target for controlling GVHD and tumor relapse after allo-HCT.


Subject(s)
Graft vs Host Disease/genetics , Sterol Esterase/metabolism , T-Lymphocytes, Regulatory/metabolism , Humans
13.
Small ; 16(10): e1904064, 2020 03.
Article in English | MEDLINE | ID: mdl-32067382

ABSTRACT

Extracellular vesicles secreted from adipose-derived mesenchymal stem cells (ADSCs) have therapeutic effects in inflammatory diseases. However, production of extracellular vesicles (EVs) from ADSCs is costly, inefficient, and time consuming. The anti-inflammatory properties of adipose tissue-derived EVs and other biogenic nanoparticles have not been explored. In this study, biogenic nanoparticles are obtained directly from lipoaspirate, an easily accessible and abundant source of biological material. Compared to ADSC-EVs, lipoaspirate nanoparticles (Lipo-NPs) take less time to process (hours compared to months) and cost less to produce (clinical-grade cell culture facilities are not required). The physicochemical characteristics and anti-inflammatory properties of Lipo-NPs are evaluated and compared to those of patient-matched ADSC-EVs. Moreover, guanabenz loading in Lipo-NPs is evaluated for enhanced anti-inflammatory effects. Apolipoprotein E and glycerolipids are enriched in Lipo-NPs compared to ADSC-EVs. Additionally, the uptake of Lipo-NPs in hepatocytes and macrophages is higher. Lipo-NPs and ADSC-EVs have comparable protective and anti-inflammatory effects. Specifically, Lipo-NPs reduce toll-like receptor 4-induced secretion of inflammatory cytokines in macrophages. Guanabenz-loaded Lipo-NPs further suppress inflammatory pathways, suggesting that this combination therapy can have promising applications for inflammatory diseases.


Subject(s)
Adipose Tissue , Extracellular Vesicles , Inflammation , Nanoparticles , Adipose Tissue/chemistry , Anti-Inflammatory Agents/economics , Anti-Inflammatory Agents/therapeutic use , Humans , Inflammation/therapy , Mesenchymal Stem Cells/metabolism
14.
Cells ; 7(12)2018 Dec 16.
Article in English | MEDLINE | ID: mdl-30558352

ABSTRACT

Concentration of extracellular vesicles (EVs) from biological fluids in a scalable and reproducible manner represents a major challenge. This study reports the use of tangential flow filtration (TFF) for the highly efficient isolation of EVs from large volumes of samples. When compared to ultracentrifugation (UC), which is the most widely used method to concentrate EVs, TFF is a more efficient, scalable, and gentler method. Comparative assessment of TFF and UC of conditioned cell culture media revealed that the former concentrates EVs of comparable physicochemical characteristics, but with higher yield, less single macromolecules and aggregates (<15 nm in size), and improved batch-to-batch consistency in half the processing time (1 h). The TFF protocol was then successfully implemented on fluids derived from patient lipoaspirate. EVs from adipose tissue are of high clinical relevance, as they are expected to mirror the regenerative properties of the parent cells.

15.
J Control Release ; 273: 86-98, 2018 03 10.
Article in English | MEDLINE | ID: mdl-29373816

ABSTRACT

Extracellular vesicles (EVs) are endogenous nanoparticles that play important roles in intercellular communication. Unmodified and engineered EVs can be utilized for therapeutic purposes. For instance, mesenchymal stem cell (MSC)-derived EVs have shown promise for tissue repair, while drug-loaded EVs have the potential to be used for cancer treatment. The liver is an ideal target for EV therapy due to the intrinsic regenerative capacity of hepatic tissue and the tropism of systemically injected nanovesicles for this organ. This review will give an overview of the potential of EV therapeutics in liver disease. Specifically, the mechanisms by which MSC-EVs induce liver repair will be covered. Moreover, the use of drug-loaded EVs for the treatment of hepatocellular carcinoma will also be discussed. Although there are several challenges associated with the clinical translation of EVs, these biological nanoparticles represent a promising new therapeutic modality for liver disease.


Subject(s)
Extracellular Vesicles , Liver Diseases/therapy , Animals , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...