Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Toxicol Appl Pharmacol ; 483: 116804, 2024 02.
Article in English | MEDLINE | ID: mdl-38185387

ABSTRACT

Pregnant women are exposed to complex chemical mixtures, many of which reach the placenta. Some of these chemicals interfere with epidermal growth factor receptor (EGFR) activation, a receptor tyrosine kinase that modulates several placenta cell functions. We hypothesized that a mixture of chemicals (Chem-Mix) known to reduce EGFR activation (polychlorinated biphenyl (PCB)-126, PCB-153, atrazine, trans-nonachlor, niclosamide, and bisphenol S) would interfere with EGFR-mediated trophoblast cell functions. To test this, we determined the chemicals' EGFR binding ability, EGFR and downstream effectors activation, and trophoblast functions (proliferation, invasion, and endovascular differentiation) known to be regulated by EGFR in extravillous trophoblasts (EVTs). The Chem-Mix competed with EGF for EGFR binding, however only PCB-153, niclosamide, trans-nonachlor, and BPS competed for binding as single chemicals. The effects of the Chem-Mix on EGFR phosphorylation were tested by exposing the placental EVT cell line, HTR-8/SVneo to control (0.1% DMSO), Chem-Mix (1, 10, or 100 ng/ml), EGF (30 ng/ml), or Chem-Mix + EGF. The Chem-Mix - but not the individual chemicals - reduced EGF-mediated EGFR phosphorylation in a dose dependent manner, while no effect was observed in its downstream effectors (AKT and STAT3). None of the individual chemicals affected EVT cell invasion, but the Chem-Mix reduced EVT cell invasion independent of EGF. In support of previous studies that have explored chemicals targeting a specific pathway (estrogen/androgen receptor), current findings indicate that exposure to a chemical mixture that targets the EGFR pathway can result in a greater impact compared to individual chemicals in the context of placental cell functions.


Subject(s)
Epidermal Growth Factor , Hydrocarbons, Chlorinated , Placenta , Polychlorinated Biphenyls , Humans , Female , Pregnancy , Epidermal Growth Factor/metabolism , Epidermal Growth Factor/pharmacology , Placenta/metabolism , Niclosamide , Trophoblasts/metabolism , ErbB Receptors/metabolism , Cell Movement
2.
Arch Toxicol ; 97(6): 1649-1658, 2023 06.
Article in English | MEDLINE | ID: mdl-37142754

ABSTRACT

Organotin chemicals (butyltins and phenyltins) are the most widely used organometallic chemicals worldwide and are used in industrial applications, such as biocides and anti-fouling paints. Tributyltin (TBT) and more recently, dibutyltin (DBT) and triphenyltin (TPT) have been reported to stimulate adipogenic differentiation. Although these chemicals co-exist in the environment, their effect in combination remains unknown. We first investigated the adipogenic effect of eight organotin chemicals (monobutyltin (MBT), DBT, TBT, tetrabutyltin (TeBT), monophenyltin (MPT), diphenyltin (DPT), TPT, and tin chloride (SnCl4)) in the 3T3-L1 preadipocyte cell line in single exposures at two doses (10 and 50 ng/ml). Only three out of the eight organotins induced adipogenic differentiation with TBT eliciting the strongest adipogenic differentiation (in a dose-dependent manner) followed by TPT and DBT, as demonstrated by lipid accumulation and gene expression. We then hypothesized that, in combination (TBT, DBT, and TPT), adipogenic effects will be exacerbated compared to single exposures. However, at the higher dose (50 ng/ml), TBT-induced differentiation was reduced by TPT and DBT when in dual or triple combination. We tested whether TPT or DBT would interfere with adipogenic differentiation stimulated by a peroxisome proliferator-activated receptor (PPARγ) agonist (rosiglitazone) or a glucocorticoid receptor agonist (dexamethasone). Both DBT50 and TPT50 reduced rosiglitazone-, but not dexamethasone-stimulated adipogenic differentiation. In conclusion, DBT and TPT interfere with TBT's adipogenic differentiation possibly via PPARγ signaling. These findings highlight the antagonistic effects among organotins and the need to understand the effects and mechanism of action of complex organotin mixtures on adipogenic outcomes.


Subject(s)
PPAR gamma , Trialkyltin Compounds , Animals , Mice , Rosiglitazone , PPAR gamma/metabolism , 3T3-L1 Cells , Trialkyltin Compounds/toxicity , Cell Differentiation
3.
Chemosphere ; 318: 137960, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36716934

ABSTRACT

Bisphenol S (BPS) is an endocrine disrupting chemical and the second most abundant bisphenol detected in humans. We have recently demonstrated that in utero exposure to BPS reduces human placenta cell fusion by interfering with epidermal growth factor (EGF)-dependent EGF receptor (EGFR) activation. Our previous work suggests that this occurs via binding of BPS to the extracellular domain of EGFR. However, whether BPS directly binds to EGFR has not been confirmed. We evaluated the binding ability of BPA, BPF and BPS to EGFR to determine whether EGFR binding is a unique attribute of BPS. To test these hypotheses, we first exposed HTR-8/SVneo cells to BPS, BPA, or BPF, with or without EGF. When co-exposed to EGF, BPS, but not BPA nor BPF, reduced EGFR phosphorylation by ∼60%, demonstrating that only BPS can interfere with EGF-dependent EGFR activation. As this indicates that BPS binding to the extracellular domain is responsible for its effect, we performed a computational search for putative binding sites on the EGFR extracellular domain, and performed ligand docking of BPS, BPA, and BPF at these sites. We identified three sites where polar interactions between positively charged residues and the sulfonyl group of BPS could lead binding selectivity over BPA and BPF. To test whether EGFR mutations at the predicted BPS binding sites (Arg255, Lys454, and Arg297) could prevent BPS's interference on EGFR activation, mutations for each EGFR target amino acids (R255A, R297A, and K454A) were introduced. For variants with R297A or K454A mutations, BPS did not affect EGF-mediated EGFR phosphorylation or EGFR-mediated cell invasion, suggesting that these residues are needed for the BPS antagonism effect on EGFR. In conclusion, BPS, but not BPA or BPF, interferes with EGFR-mediated trophoblast cell functions through binding at Arg297 and Lys454 amino acid residues in the extracellular domain of EGFR.


Subject(s)
Epidermal Growth Factor , Trophoblasts , Female , Pregnancy , Humans , Epidermal Growth Factor/pharmacology , ErbB Receptors/metabolism , Binding Sites , Benzhydryl Compounds/metabolism
4.
Zygote ; 30(6): 830-840, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36148782

ABSTRACT

The objective of this study was to investigate the effects of adding ß-mercaptoethanol (ßME) to culture medium of bovine in vitro-produced (IVP) embryos prior to or after vitrification on embryo development and cryotolerance. In Experiment I, Day-7 IVP blastocysts were vitrified and, after warming, cultured in medium containing 0, 50 or 100 µM ßME for 72 h. Embryos cultured in 100 µM ßME attained higher hatching rates (66.7%) than those culture in 0 (47.7%) and 50 (52.4%) µM ßME. In Experiment II, IVP embryos were in vitro-cultured (IVC) to the blastocyst stage in 0 (control) or 100 µM ßME, followed by vitrification. After warming, embryos were cultured for 72 h (post-warming culture, PWC) in 0 (control) or 100 µM ßME, in a 2 × 2 factorial design: (i) CTRL-CTRL, control IVC and control PWC; (ii) CTRL-ßME, control IVC and ßME-supplemented PWC; (iii) ßME-CTRL, ßME-supplemented IVC and control PWC; or (iv) ßME-ßME, ßME-supplemented IVC and ßME-supplemented PWC. ßME during IVC reduced embryo development (28.0% vs. 43.8%) but, following vitrification, higher re-expansion rates were seen in ßME-CTRL (84.0%) and ßME-ßME (87.5%) than in CTRL-CTRL (71.0%) and CTRL-ßME (73.1%). Hatching rates were higher in CTRL-ßME (58.1%) and ßME-ßME (63.8%) than in CTRL-CTRL (36.6%) and ßME-CTRL (42.0%). Total cell number in hatched blastocysts was higher in ßME-ßME (181.2 ± 7.4 cells) than CTRL-CTRL (139.0 ± 9.9 cells). Adding ßME to the IVC medium reduced development but increased cryotolerance, whereas adding ßME to the PWC medium improved embryo survival, hatching rates, and total cell numbers.


Subject(s)
Cryopreservation , Embryo Culture Techniques , Cattle , Animals , Mercaptoethanol/pharmacology , Cryopreservation/veterinary , Fertilization in Vitro , Vitrification , Blastocyst
5.
Toxicol Appl Pharmacol ; 453: 116209, 2022 10 15.
Article in English | MEDLINE | ID: mdl-35998708

ABSTRACT

Organotins, a chemical family with over 30 congeners to which humans are directly exposed to through food consumption, are a chemical class widely used as stabilizers in polyvinyl chloride, and biocides in antifouling products. Aside from tributyltin (TBT), toxicological information on other organotin congeners, such as triphenyltin (TPT), remains scarce. Our previous work has demonstrated that TBT can interfere with cholesterol trafficking in steroidogenic cells. Given their structural similarities, we hypothesized that TPT, similar to TBT, disrupts intracellular cholesterol transport and impairs steroidogenesis in ovarian theca cells. To test this, human and ovine primary ovarian theca cells were isolated, purified and exposed to TPT at environmentally relevant doses (1 or 10 ng/ml) in pre-luteinized (48 h exposure) or luteinizing cells (72 h exposure). Intracellular cholesterol levels, progesterone, and testosterone secretion and gene expression of nuclear receptors, cholesterol transporters, and steroidogenic enzymes were evaluated. In ovine cells, TPT upregulated StAR, ABCA1, and SREBF1 mRNA and ABCA1 protein in both pre-luteinized and luteinized stages. TPT did not alter intracellular cholesterol or testosterone synthesis, but upregulated progesterone production. Inhibitor and shRNA knockdown approaches were then used to evaluate the role of retinoid X receptor (RXR) and liver X receptor (LXR) on TPT's effects. TPT upregulated ABCA1 and StAR expression was blocked by both LXR and RXR antagonists. TPT's effect on ABCA1 expression was reduced in LXRß and RXRß knockdown theca cells. Similar findings were obtained with primary human theca cells. No synergistic effect of TBT and TPT was observed. In conclusion, at an environmentally relevant dose, TPT upregulates theca cell cholesterol transporter ABCA1 expression via RXR and LXR pathways. Similar effects of TPT on human and sheep theca cells supports its conserved mechanism across mammalian theca cells.


Subject(s)
Progesterone , Trialkyltin Compounds , Animals , Cholesterol/metabolism , Female , Humans , Liver X Receptors , Mammals/metabolism , Organotin Compounds , Progesterone/metabolism , Retinoid X Receptors , Sheep , Testosterone/metabolism , Trialkyltin Compounds/toxicity
6.
Chemosphere ; 302: 134806, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35504463

ABSTRACT

Bisphenol A (BPA) is an endocrine disrupting chemical known to promote adipose tissue mass in vivo and adipogenesis in vitro. Whether BPA can affect and reprogram early adipogenic differentiation signals that trigger adipogenic differentiation, remains unknown. We hypothesized that gestational BPA exposure results in a preadipocyte phenotype that leads to accelerated adipogenic differentiation, and that this phenotype is sex specific. Primary ovine fetal preadipocytes were derived from control (C) and BPA-exposed during pregnancy and differentiated in vitro. Gestational BPA enhanced lipid accumulation at early stages of differentiation (48 h) and this was evident in females but not male-derived fetal preadipocytes. After an RNA sequencing approach, samples were compared as follows: 2 groups (C vs. BPA); 2 sexes (female (F) vs. male (M)); and 2 time points (0 h vs. 48 h). Before differentiation, 15 genes were differentially expressed between the C and the BPA-exposed preadipocytes within sex. In BPA-F, extracellular matrix remodeling genes cathepsin K and collagen 5α3 were upregulated compared to C-F. At 48 h, BPA-F had 154 genes differentially expressed vs. C-F and BPA-M had 487 genes differentially expressed vs. C-M. Triglyceride and glycerophospholipid metabolism were the most upregulated pathways in BPA-F. Downregulated pathways were associated with extracellular matrix organization in BPA-exposed preadipocytes. These findings are among the first to demonstrate that gestational BPA can modify the fate of adipocyte precursors by altering pathways associated to extracellular matrix components, an often-disregarded, but required aspect of adipogenic differentiation. This work highlights the need to investigate early adipogenic differentiation changes in other obesogenic chemicals.


Subject(s)
Adipogenesis , Benzhydryl Compounds , Adipocytes/metabolism , Animals , Benzhydryl Compounds/metabolism , Benzhydryl Compounds/toxicity , Cell Differentiation , Cells, Cultured , Extracellular Matrix , Female , Male , Phenols , Pregnancy , Sheep
7.
Int J Mol Sci ; 23(2)2022 Jan 08.
Article in English | MEDLINE | ID: mdl-35054855

ABSTRACT

The placenta supports fetal growth and is vulnerable to exogenous chemical exposures. We have previously demonstrated that exposure to the emerging chemical bisphenol S (BPS) can alter placental endocrine function. Mechanistically, we have demonstrated that BPS interferes with epidermal growth factor receptor (EGFR) signaling, reducing placenta cell fusion. Extravillous trophoblasts (EVTs), a placenta cell type that aids with vascular remodeling, require EGF to invade into the maternal endometrium. We hypothesized that BPS would impair EGF-mediated invasion and proliferation in EVTs. Using human EVTs (HTR-8/SVneo cells), we tested whether BPS could inhibit the EGF response by blocking EGFR activation. We also evaluated functional endpoints of EGFR signaling, including EGF endocytosis, cell invasion and proliferation, and endovascular differentiation. We demonstrated that BPS blocked EGF-induced phosphorylation of EGFR by acting as a competitive antagonist to EGFR. Transwell assay and a three-dimensional microfluidic chip invasion assay revealed that BPS exposure can block EGF-mediated cell invasion. BPS also blocked EGF-mediated proliferation and endovascular differentiation. In conclusion, BPS can prevent EGF-mediated EVT proliferation and invasion through EGFR antagonism. Given the role of EGFR in trophoblast proliferation and differentiation during placental development, our findings suggest that maternal exposure to BPS may contribute to placental dysfunction via EGFR-mediated mechanisms.


Subject(s)
ErbB Receptors/metabolism , Phenols/toxicity , Signal Transduction , Sulfones/toxicity , Trophoblasts/pathology , Cell Differentiation/drug effects , Cell Line , Cell Proliferation/drug effects , Collagen/pharmacology , Drug Combinations , Endocytosis/drug effects , Epidermal Growth Factor/pharmacology , Humans , Laminin/pharmacology , Neovascularization, Physiologic/drug effects , Phosphorylation/drug effects , Proteoglycans/pharmacology , Signal Transduction/drug effects , Trophoblasts/drug effects
8.
Anim Reprod Sci ; 234: 106856, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34626867

ABSTRACT

This experiment was designed to study mechanisms affecting growth of in vivo-derived (IVD) and in vitro-produced (IVP) fetuses of cattle. Day-7 IVD or IVP cattle blastocysts were transferred to recipients, with pregnant females being slaughtered on Days 90 or 180 of gestation or allowed to undergo parturition. Uteri and contents were dissected and physically measured, and maternal and fetal plasma and amniotic and allantoic fluids were collected for IGF-1 and IGF-2 determinations, and IGFBP profile characterization. Transcripts for IGF-1 and IGF-2 mRNA in placental and fetal tissues, and IGF-1r and IGF-2r in placentomes were determined. There was a greater fetal weight in the IVP group, which was associated with greater IGF-1 and IGF-2 concentrations in maternal circulation, and changes in IGFBP profiles within fetal fluids. Day-90 IVP-derived fetuses were longer, had greater organ weights, larger placentomes, less placentome IGF-2r mRNA transcript, and greater maternal IGF-1 and IGF-2 concentrations than controls. On Day 180 and at parturition tissues from IVP-derived fetuses/calves were from larger uteri, with larger placentomes/fetal membranes, fetuses/calves weighed more, had greater fetal hepatic IGF-2 mRNA transcript, had less fetal plasma IGF-1 and greater allantoic IGF-2 concentrations, greater and lesser IGFBP activities in the allantoic and amniotic fluids, respectively, and greater glucose and fructose accumulation in fetal fluids. Components of the IGF system were differentially regulated not only according to the gestation period (Days 90 or 180) and fluid type (maternal or fetal plasma, amniotic or allantoic fluids), but also based on conceptus origin (IVP or IVD) in cattle.


Subject(s)
Cattle , Fetus/metabolism , Gene Expression Regulation, Developmental/physiology , Insulin-Like Growth Factor II/metabolism , Insulin-Like Growth Factor I/metabolism , Receptor, IGF Type 2/metabolism , Animals , Female , Fetal Development , Insulin-Like Growth Factor Binding Proteins/genetics , Insulin-Like Growth Factor Binding Proteins/metabolism , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor II/genetics , Placenta/metabolism , Pregnancy , Receptor, IGF Type 2/genetics , Signal Transduction
9.
Reprod Domest Anim ; 56(6): 857-863, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33713470

ABSTRACT

The bovine IGF2 locus is a genomic region with alternative transcripts controlled by five promoters (P0, P1, P2, P3 and P4). As transcriptional regulation can affect messenger RNA (mRNA) stability and translation, and thus, subsequent biological effects, this study evaluated the bovine IGF2 promoter-specific expression patterns in oocytes and pre-implantation embryos produced in vitro by our standard IVP procedures. Immature and matured oocytes, and pre-implantation embryos at the 1-, 2-, 4-, 8- and 16-cell, and at early morula, compact morula, blastocyst and expanded blastocyst stages were collected in three pools of five structures per stage, in four replicates. Total RNA was extracted and subjected to RT-qPCR, using four sets of IGF2 promoter-specific primers covering transcripts driven by promoters P0/P1, P2, P3 and P4, with fragments sequenced for confirmation. Expression of P2- and P4-derived transcripts showed an initial peak between immature (P4) or matured (P2/P4) oocytes and 2-cell embryos, gradually falling until embryo genome activation (EGA), rising again at compaction and cavitation. P0/P1-derived transcripts were identified after EGA, during compaction, whereas P3 activity was not detected at any stage. Our findings suggest that P0/P1 and P2 likely have secondary roles during early stages, whereas P3 may be more relevant later in development. P4 seems to be the main pathway for bovine IGF2 expression during oocyte maturation and embryo development and, therefore, the main target to influence IVP in modulation of embryo growth and in studies in developmental biology.


Subject(s)
Cattle/embryology , Gene Expression Regulation, Developmental , Insulin-Like Growth Factor II/metabolism , Promoter Regions, Genetic , Animals , Embryo, Mammalian/metabolism , Embryonic Development , Female , Fertilization in Vitro/veterinary , Insulin-Like Growth Factor II/genetics , Male , Oocytes/metabolism , RNA, Messenger/metabolism
10.
Environ Health Perspect ; 129(2): 27005, 2021 02.
Article in English | MEDLINE | ID: mdl-33605785

ABSTRACT

BACKGROUND: Bisphenol S (BPS) is an endocrine-disrupting chemical and the second most abundant bisphenol detected in humans. In vivo BPS exposure leads to reduced binucleate cell number in the ovine placenta. Binucleate cells form by cellular fusion, similar to the human placental syncytiotrophoblast layer. Given that human placental syncytialization can be stimulated through epidermal growth factor (EGF), we hypothesized that BPS would reduce human cytotrophoblast syncytialization through disruption of EGF receptor (EGFR) signaling. OBJECTIVE: We tested whether BPS interferes EGFR signaling and disrupts human cytotrophoblast syncytialization. METHODS: We first tested BPS competition for EGFR using an EGF/EGFR AlphaLISA assay. Using human primary term cytotrophoblast cells (hCTBs) and MDA-MD-231 cells, a breast cancer cell line with high EGFR expression, we evaluated EGFR downstream signaling and tested whether BPS could inhibit the EGF response by blocking EGFR activation. We also evaluated functional end points of EGFR signaling, including EGF endocytosis, cell proliferation, and syncytialization. RESULTS: BPS blocked EGF binding in a dose-dependent manner and reduced EGF-mediated phosphorylated EGFR in both cell types. We further confirmed that BPS acted as an EGFR antagonist as shown by a reduction in EGF internalization in both hCTBs and MDA-MD-231 cells. Finally, we demonstrated that BPS interfered with EGF-mediated cell processes, such as cell proliferation in MDA-MD-231 cells and syncytialization in hCTBs. EGF-mediated, but not spontaneous, hCTB syncytialization was fully blocked by BPS (200 ng/mL), a dose within urinary BPS concentrations detected in humans. CONCLUSIONS: Given the role of EGFR in trophoblast proliferation and differentiation during placental development, this study suggests that exposures to BPS at environmentally relevant concentrations may result in placenta dysfunction, affecting fetal growth and development. https://doi.org/10.1289/EHP7297.


Subject(s)
Placenta , Trophoblasts , Animals , Epidermal Growth Factor , ErbB Receptors , Female , Humans , Phenols , Pregnancy , Sheep , Sulfones
11.
Trends Endocrinol Metab ; 31(7): 508-524, 2020 07.
Article in English | MEDLINE | ID: mdl-32249015

ABSTRACT

Endocrine disrupting chemicals (EDCs) are chemicals that can interfere with normal endocrine signals. Human exposure to EDCs is particularly concerning during vulnerable periods of life, such as pregnancy. However, often overlooked is the effect that EDCs may pose to the placenta. The abundance of hormone receptors makes the placenta highly sensitive to EDCs. We have reviewed the most recent advances in our understanding of EDC exposures on the development and function of the placenta such as steroidogenesis, spiral artery remodeling, drug-transporter expression, implantation and cellular invasion, fusion, and proliferation. EDCs reviewed include those ubiquitous in the environment with available human biomonitoring data. This review also identifies critical gaps in knowledge to drive future research in the field.


Subject(s)
Endocrine Disruptors/toxicity , Placenta/drug effects , Placenta/metabolism , Animals , Endocrine System/drug effects , Endocrine System/metabolism , Female , Humans , Pregnancy , Trophoblasts/drug effects , Trophoblasts/metabolism
12.
Environ Sci Pollut Res Int ; 26(26): 27043-27051, 2019 Sep.
Article in English | MEDLINE | ID: mdl-31313228

ABSTRACT

Improving digestibility, fermentation characteristics, and reducing greenhouse biogases to protect the environment without the use of synthetic materials is an important goal of modern-day farming and nutritionist. Plant extracts are capable of solving these. This is due to the digestive enzymes and the bioactive components capable of performing antimicrobial functions inherent in these plants. This study was aimed to investigate the effect of standard maize substrate treated with selected herbs and spices extracts on ruminal environmental biogas production and pressure during fermentation via biogas production technique. Herbs (Azadirachta indica leaves (T1), Moringa oleifera leaves (T2), Ocimum gratissimum leaves (T3) and spices (Allium sativum bulb (T4), Zingiber officinale rhizome (T5)) were harvested, air dried, and milled using standard procedures. Methanolic extracts of the herbs and spices were prepared and used as additives at different concentrations (50, 100, and 150 µL) to the maize substrate for in vitro biogas production. Data were analyzed using regression analysis. There were significant (P < 0.05) differences across all the treatments on the volume and pressure of biogas. The pressure and volume of biogas when compared with the levels tested showed differences (P < 0.05) across all the treatments for the prediction of volume from pressure of biogas. The pressure and volume of gas produced in vitro increased (P < 0.05) and biogases decreased (P < 0.05) by the substrate treated with herbs and spices but for the drum stick leaves which was similar for the levels of concentration tested. This means that the level tested had a pronounced mitigation effect on pressure of biogas and volume of biogas produced. It was concluded that the herb and spice extracts have the potential to improve rumen fermentation and reduce the production of biogases in ruminant diet.


Subject(s)
Animal Feed , Biofuels , Plant Extracts/pharmacology , Rumen/metabolism , Animals , Azadirachta/chemistry , Digestion/drug effects , Fermentation/drug effects , Garlic/chemistry , Zingiber officinale/chemistry , Methane/metabolism , Moringa oleifera/chemistry , Ocimum/chemistry , Plant Leaves/chemistry , Pressure , Rumen/drug effects , Sheep , Spices , Zea mays/chemistry
13.
Anim Reprod ; 15(Suppl 1): 765-790, 2018.
Article in English | MEDLINE | ID: mdl-36249841

ABSTRACT

Elongation of the preimplantation conceptus is a prerequisite for maternal recognition of pregnancy and implantation in ruminants. Failures in this phase of development likely contribute for the subfertility of lactating dairy cows. This review will discuss our current understanding of the physiological and cellular requirements for successful elongation of the preimplantation conceptus and their potential deficiency in subfertile lactating dairy cows. Major requirements include the priming of the endometrium by ovarian steroids, reprogramming of trophectoderm cells at the onset of elongation, and intensification of the crosstalk between elongating conceptus and endometrium. Conceptus elongation and survival in dairy cows does not seem to be affected by lactation per se but seem to be altered in subgroups of cows with endocrine, metabolic and nutritional imbalances or deficiencies. These subgroups of cows include those suffering diseases postpartum, anovular cows enrolled in synchronization programs, and cows with low concentration of circulating steroids and IGF1. Success of conceptus elongation starts long before breeding and entails optimization of health and nutrition programs, especially during the transition period, and might be extended to the supplementation of endocrine and nutritional shortages at the time of breeding. Genetic selection will eventually become more important as researchers unravel the molecular control of reproduction and develop new fertility traits focused on pregnancy survival.

14.
Ciênc. rural ; 42(5): 870-874, maio 2012. ilus, tab
Article in Portuguese | LILACS | ID: lil-626308

ABSTRACT

Objetivou-se avaliar o efeito de diferentes ofertas de forragem em pastagem de estrela africana (Cynodon nlemfuensis Vanderyst var. nlemfuensis), sobre a taxa de desaparecimento de forragem (TDF) e a produção de leite de vacas mestiças Holandês x Gir. Trinta animais foram submetidos a três ofertas de forragem (OF) distintas, sendo 10,0 12,5 e 15,0% do peso corporal. Houve influência da OF sobre a TDF (P<0,001). Para cada unidade de acréscimo da OF, a TDF aumentou 140,0kg ha-1 dia-1. Houve efeito da relação folha:colmo sobre a produção de leite (P<0,05). O aumento da oferta não refletiu em incremento da produção de leite em função do manejo empregado para obtenção das ofertas e estádio de crescimento das plantas.


The objective of this study was to evaluate different herbage allowances in stargrass (Cynodon nlemfuensis Vanderyst var. nlemfuensis), on the herbage disappearance rate (HDR) and milk yield in crossbred Holstein x Gir cows. Thirty animals were assigned to three different herbage allowances (HA), ranging from 10.0, 12.5 and 15.0% BW. There was effect of HA on the HDR (P<0.001). Increasing the HA in one unit had effect on the HDR increasing by 140.0kg ha-1 day-1. There was effect of leaf:stem ratio on milk yield (P<0.05). The increasing in supplying herbage allowances did not resulted in increased milk yield because the management for herbage allowance and herbage growth.

SELECTION OF CITATIONS
SEARCH DETAIL
...