Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Quant Imaging Med Surg ; 14(2): 1591-1601, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38415124

ABSTRACT

Background: Gadolinium ethoxybenzyl-diethylenetriaminepentaacetic acid (Gd-EOB-DTPA) has shown potential in reflecting the hepatic function alterations in nonalcoholic steatohepatitis (NASH). The purpose of this study was to evaluate whether Gd-EOB-DTPA combined with water-specific T1 (wT1) mapping can be used to detect liver inflammation in the early-stage of NASH in rats. Methods: In this study, 54 rats with methionine- and choline-deficient (MCD) diet-induced NASH and 10 normal control rats were examined. A multiecho variable flip angle gradient echo (VFA-GRE) sequence was performed and repeated 40 times after the injection of Gd-EOB-DTPA. The wT1 of the liver and the reduction rate of wT1 (rrT1) were calculated. All rats were histologically evaluated and grouped according to the NASH Clinical Research Network scoring system. Quantitative real-time polymerase chain reaction (qRT-PCR) was performed to detect the expression of Gd-EOB-DTPA transport genes. Analysis of variance and least significant difference tests were used for multiple comparisons of quantitative results between all groups. Multiple regression analysis was applied to identify variables associated with precontrast wT1 (wT1pre), and receiver operating characteristic (ROC) analysis was performed to assess the diagnostic performance. Results: The rats were grouped according to inflammatory stage (G0 =4, G1 =15, G2 =12, G3 =23) and fibrosis stage (F0 =26, F1 =19, F2 =9). After the infusion of Gd-EOB-DTPA, the rrT1 showed significant differences between the control and NASH groups (P<0.05) but no difference between the different inflammation and fibrosis groups at any time points. The areas under curve (AUCs) of rrT1 at 10, 20, and 30 minutes were only 0.53, 0.58, and 0.61, respectively, for differentiating between low inflammation grade (G0 + G1) and high inflammation grade (G2 + G3). The MRI findings were verified by qRT-PCR examination, in which the Gd-EOB-DTPA transporter expressions showed no significant differences between any inflammation groups. Conclusions: The wT1 mapping quantitative method combined with Gd-EOB-DTPA was not capable of discerning the inflammation grade in a rat model of early-stage NASH.

2.
ACS Appl Mater Interfaces ; 16(8): 9702-9712, 2024 Feb 28.
Article in English | MEDLINE | ID: mdl-38363797

ABSTRACT

Magnetic resonance angiography (MRA) contrast agents are extensively utilized in clinical practice due to their capability of improving the image resolution and sensitivity. However, the clinically approved MRA contrast agents have the disadvantages of a limited acquisition time window and high dose administration for effective imaging. Herein, albumin-coated gadolinium-based nanoparticles (BSA-Gd) were meticulously developed for in vivo ultrahigh-resolution MRA. Compared to Gd-DTPA, BSA-Gd exhibits a significantly higher longitudinal relaxivity (r1 = 76.7 mM-1 s-1), nearly 16-fold greater than that of Gd-DTPA, and an extended blood circulation time (t1/2 = 40 min), enabling a dramatically enhanced high-resolution imaging of microvessels (sub-200 µm) and low dose imaging (about 1/16 that of Gd-DTPA). Furthermore, the clinically significant fine vessels were successfully mapped in large mammals, including a circle of Willis, kidney and liver vascular branches, tumor vessels, and differentiated arteries from veins using dynamic contrast-enhanced MRA BSA-Gd, and have superior imaging capability and biocompatibility, and their clinical applications hold substantial promise.


Subject(s)
Magnetic Resonance Angiography , Nanoparticles , Animals , Magnetic Resonance Angiography/methods , Gadolinium DTPA , Contrast Media , Gadolinium , Magnetic Resonance Imaging/methods , Mammals
3.
Eur J Nucl Med Mol Imaging ; 51(2): 346-357, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37782321

ABSTRACT

PURPOSE: Positron emission tomography/magnetic resonance imaging (PET/MRI) is a powerful tool for brain imaging, but the spatial resolution of the PET scanners currently used for brain imaging can be further improved to enhance the quantitative accuracy of brain PET imaging. The purpose of this study is to develop an MR-compatible brain PET scanner that can simultaneously achieve a uniform high spatial resolution and high sensitivity by using dual-ended readout depth encoding detectors. METHODS: The MR-compatible brain PET scanner, named SIAT bPET, consists of 224 dual-ended readout detectors. Each detector contains a 26 × 26 lutetium yttrium oxyorthosilicate (LYSO) crystal array of 1.4 × 1.4 × 20 mm3 crystal size read out by two 10 × 10 silicon photomultiplier (SiPM) arrays from both ends. The scanner has a detector ring diameter of 376.8 mm and an axial field of view (FOV) of 329 mm. The performance of the scanner including spatial resolution, sensitivity, count rate, scatter fraction, and image quality was measured. Imaging studies of phantoms and the brain of a volunteer were performed. The mutual interferences of the PET insert and the uMR790 3 T MRI scanner were measured, and simultaneous PET/MRI imaging of the brain of a volunteer was performed. RESULTS: A spatial resolution of better than 1.5 mm with an average of 1.2 mm within the whole FOV was obtained. A sensitivity of 11.0% was achieved at the center FOV for an energy window of 350-750 keV. Except for the dedicated RF coil, which caused a ~ 30% reduction of the sensitivity of the PET scanner, the MRI sequences running had a negligible effect on the performance of the PET scanner. The reduction of the SNR and homogeneity of the MRI images was less than 2% as the PET scanner was inserted to the MRI scanner and powered-on. High quality PET and MRI images of a human brain were obtained from simultaneous PET/MRI scans. CONCLUSION: The SIAT bPET scanner achieved a spatial resolution and sensitivity better than all MR-compatible brain PET scanners developed up to date. It can be used either as a standalone brain PET scanner or a PET insert placed inside a commercial whole-body MRI scanner to perform simultaneous PET/MRI imaging.


Subject(s)
Magnetic Resonance Imaging , Positron-Emission Tomography , Humans , Equipment Design , Positron-Emission Tomography/methods , Phantoms, Imaging , Brain/diagnostic imaging
4.
Adv Mater ; 35(52): e2308130, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37962041

ABSTRACT

Endovascular embolization using microcoils can be an effective technique to treat artery aneurysms. However, microcoils with fixed designs are difficult to adapt to all aneurysm types. In this paper, a photocurable ultratough shape memory organogel with a curing time of only 2 s and megapascal-level mechanical properties is proposed. Then, it is used to manufacture the personalized 4D microcoil with a wire diameter of only 0.3 mm. The improved mechanical modulus (511.63 MPa) can reduce the possibility of microcoils' fracture during embolization. Besides, the fast body-temperature-triggering shape memory ability makes the 4D microcoil applicable in vivo. These 4D microcoils are finally delivered into the rabbit, and successfully blocked the blood flow inside different aneurysms, with neoendothelial cells and collagen fibers growing on the microcoil surface snugly, indicating full aneurysm recovery. This 4D organogel microcoil can potentially be used in personalized clinical translation on human beings.


Subject(s)
Aneurysm , Embolization, Therapeutic , Animals , Humans , Rabbits , Aneurysm/therapy , Embolization, Therapeutic/methods , Body Temperature
5.
J Magn Reson Imaging ; 2023 Nov 27.
Article in English | MEDLINE | ID: mdl-38009385

ABSTRACT

BACKGROUND: Blood flow signals may be a confounder in quantifying T1 values of plaque or thrombus and how to realize black-blood T1 mapping remains a challenge task. PURPOSE: To develop a fast and three-dimensional black-blood T1 mapping technique for quantitative assessment of atherosclerosis and venous thrombosis. STUDY TYPE: Sequence development and optimization via phantoms and volunteers as well as pilot prospective. PHANTOM AND SUBJECTS: Numerical simulations, a standard phantom, 8 healthy volunteers (mean age, 22 ± 1 years; 5 males), and 19 patients (mean age, 57 ± 14 years; 13 males) with atherosclerosis or venous thrombosis. FIELD STRENGTH/SEQUENCE: 3T/inversion recovery spin-echo sequence (IR-SE), magnetization prepared 2 rapid acquisition gradient echoes (MP2RAGE), and black-blood prepared MP2RAGE (BB-MP2RAGE). ASSESSMENT: The black-blood preparation (i.e., delay alternating with nutation for tailored excitation, DANTE) was incorporated into MP2RAGE for black-blood T1 mapping. The BB-MP2RAGE was optimized numerically based on the Bloch equation, and then the phantom study was performed to verify the accuracy of T1 mapping by BB-MP2RAGE against IR-SE and MP2RAGE. Preliminary clinical validation was prospectively performed to assess the flow suppression effect and its potential application in plaque and thrombosis identification. STATISTICAL TESTS: Pearson correlation test, Bland-Altman analysis, paired t-test, and intraclass correlation coefficient. A P value <0.05 indicates a statistically significant difference. RESULTS: Phantom experiments showed comparable accuracy of T1 maps by BB-MP2RAGE with IR-SE and MP2RAGE (all r2 > 0.99); Compared to MP2RAGE, BB-MP2RAGE effectively nulled the blood flow signals, and had a significant improvement in contrast-to-noise ratio between static tissue and blood (250.5 ± 66.6 vs. 91.9 ± 35.9). BB-MP2RAGE can quantify plaque or thrombus T1 relaxation time with blood flow signal suppression. DATA CONCLUSION: Accurate T1 mapping with sufficient blood flow suppression was achieved by BB-MP2RAGE. BB-MP2RAGE has the potential to quantitatively characterize atherosclerosis and venous thrombosis. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY: Stage 1.

6.
Brain Behav ; 13(12): e3315, 2023 12.
Article in English | MEDLINE | ID: mdl-37932960

ABSTRACT

BACKGROUND: Gaming behavior can induce cerebral changes that may be related to the neurobiological features of gaming disorder (GD). Additionally, individuals with higher levels of depression or impulsivity are more likely to experience GD. Therefore, the present pilot study explored potential neurobiological correlates of GD in the context of depression and impulsivity, after accounting for video gaming behavior. METHODS: Using resting-state functional magnetic resonance imaging (fMRI), a cross-sectional study was conducted with 35 highly involved male adult gamers to examine potential associations between GD severity and regional homogeneity (ReHo) in the entire brain. A mediation model was used to test the role of ReHo in the possible links between depression/impulsivity and GD severity. RESULTS: Individuals with greater GD severity showed increased ReHo in the right Heschl's gyrus and decreased ReHo in the right hippocampus (rHip). Furthermore, depression and impulsivity were negatively correlated with ReHo in the rHip, respectively. More importantly, ReHo in the rHip was found to mediate the associations between depression/impulsivity and GD. CONCLUSIONS: These preliminary findings suggest that GD severity is related to ReHo in brain regions associated with learning/memory/mood and auditory function. Higher levels of depression or impulsivity may potentiate GD through the functional activity of the hippocampus. Our findings advance our understanding of the neurobiological differences behind GD symptoms in highly involved gamers.


Subject(s)
Behavior, Addictive , Magnetic Resonance Imaging , Adult , Humans , Male , Pilot Projects , Magnetic Resonance Imaging/methods , Cross-Sectional Studies , Brain
7.
IEEE Trans Biomed Eng ; 70(12): 3381-3388, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37318962

ABSTRACT

OBJECTIVE: The purpose of this work is to develop a 3-channel endorectal coil (ERC-3C) structure to obtain higher signal-to-noise (SNR) and better parallel imaging performance for prostate magnetic resonance imaging (MRI) at 3T. METHODS: The coil performance was validated by in vivo studies and the SNR, g-factor, and diffusion-weighted imaging (DWI) were compared. A 2-channel endorectal coil (ERC-2C) with two orthogonal loops and a 12-channel external surface coil were employed for comparison. RESULTS: Compared with the ERC-2C with a quadrature configuration and the external 12-channel coil array, the proposed ERC-3C improved SNR performance by 23.9% and 428.9%, respectively. The improved SNR enables the ERC-3C to produce spatial high-resolution images of 0.24 mm × 0.24 mm × 2 mm (0.1152 µL) in the prostate area within 9 minutes. CONCLUSION: We developed an ERC-3C and validated its performance through in vivo MR imaging experiments. SIGNIFICANCE: The results demonstrated the feasibility of an ERC with more than two channels and that a higher SNR can be achieved using the ERC-3C compared with an orthogonal ERC-2C of the same coverage.


Subject(s)
Prostate , Prostatic Neoplasms , Humans , Male , Prostate/diagnostic imaging , Prostate/pathology , Prostatic Neoplasms/diagnostic imaging , Prostatic Neoplasms/pathology , Magnetic Resonance Imaging/methods , Diffusion Magnetic Resonance Imaging/methods , Pelvis , Signal-To-Noise Ratio
9.
Heliyon ; 9(3): e14054, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36915487

ABSTRACT

It has been a long-cherished wish in biomedicine research to have an imaging tool to visualize gene expression, with good spatiotemporal resolution, in rodent and primate animals noninvasively and longitudinally. To this purpose, we here present a novel genetic encoded magnetic resonance imaging reporter, i.e., GEM reporter, for noninvasive visualization of cell-specific gene expression. The GEM reporter was developed through codon modification of a bacteria-originated manganese (Mn) binding protein, allowing the sequestration of endogenous Mn in local tissues. When expressed in bacteria, plant and animals, GEM reporter can robustly produce high image contrast in T1-weighted MRI without additional substrates or contrast agents. Importantly, GEM reporter can be tracked inherently by MRI in specific cells and tissues. These findings support GEM reporter as a versatile marker for deciphering gene expression spatiotemporally in living subjects.

10.
Magn Reson Med ; 89(1): 477-486, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36111357

ABSTRACT

PURPOSE: We aimed to improve B0 magnetic field homogeneity and minimize the interference between RF coils and local B0 shimming coils with few channel numbers. METHODS: To design and construct the prototype for B0 shimming of the rat brain, we first evaluated the interferences of single shimming loops on RF receiver loops. Then, B0 shimming of the whole rat brain was implemented using an optimization procedure. The positions and currents of the local shimming coils with channel numbers from 3 to 6 were optimized to improve shimming performance. Based on the simulation results, a 5-channel local shimming coil, combined with a 3-channel RF receiver coil, was constructed and evaluated by animal experiments. RESULTS: There was marginal SNR loss within 5% after integrating the local shimming coil into the RF receiver coil. With respect to the Siemens standard shims up to second order, the B0 inhomogeneity in one whole rat brain was reduced from 39.6 Hz to 24.7 Hz by using the local shimming coil. A large portion of the EPI distortions was recovered after using the 5-channel local shimming coil. The temporal SNR using the local shimming coil was higher than that using the Siemens standard shims up to second order, with an improvement of more than 24%. CONCLUSIONS: The local shimming coil can improve B0 magnetic field homogeneity despite minor effects on the RF coil and can benefit a variety of applications that are sensitive to B0 inhomogeneity. Nevertheless, EPI for rat brain is still very challenging.


Subject(s)
Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Animals , Rats , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Radio Waves , Brain/diagnostic imaging , Neuroimaging
11.
Bioact Mater ; 10: 515-525, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34901564

ABSTRACT

The imbalance between oxidants and antioxidants in cancer cells would evoke oxidative stress-induced cell death, which has been demonstrated to be highly effective in treating malignant tumors. Sonodynamic therapy (SDT) adopts ultrasound (US) as the excitation source to induce the production of reactive oxygen species (ROS), which emerges as a noninvasive therapeutic strategy with deep tissue penetration depth and high clinical safety. Herein, we construct novel sonoactivated oxidative stress amplification nanoplatforms by coating MnO2 on Au nanoparticle-anchored black phosphorus nanosheets and decorating soybean phospholipid subsequently (Au/BP@MS). The Au/BP@MS exhibit increased ROS generation efficiency under US irradiation in tumor tissues due to Au/BP nanosensitizer-induced improvement of electron-hole separation as well as MnO2-mediated O2 generation and GSH depletion, thus leading to notable inhibition effect on tumor growth. Moreover, tumor microenvironment-responsive biodegradability of Au/BP@MS endows them with enhanced magnetic resonance imaging guidance and clinical potential for cancer theranostics.

12.
J Xray Sci Technol ; 29(4): 577-595, 2021.
Article in English | MEDLINE | ID: mdl-33935130

ABSTRACT

BACKGROUND: Coronary computed tomography angiography (CCTA) is a noninvasive imaging modality to detect and diagnose coronary artery disease. Due to the limitations of equipment and the patient's physiological condition, some CCTA images collected by 64-slice spiral computed tomography (CT) have motion artifacts in the right coronary artery, left circumflex coronary artery and other positions. OBJECTIVE: To perform coronary artery motion artifact correction on clinical CCTA images collected by Siemens 64-slice spiral CT and evaluate the artifact correction method. METHODS: We propose a novel method based on the generative adversarial network (GAN) to correct artifacts of CCTA clinical images. We use CCTA clinical images collected by 64-slice spiral CT as the original dataset. Pairs of regions of interest (ROIs) cropped from original dataset or images with and without motion artifacts are used to train the dual-zone GAN. When predicting the CCTA images, the network inputs only the clinical images with motion artifacts. RESULTS: Experiments show that this network effectively corrects CCTA motion artifacts. Regardless of ROIs or images, the peak signal to noise ratio (PSNR), structural similarity (SSIM), mean square error (MSE) and mean absolute error (MAE) of the generated images are greatly improved compared to those of the input data. In addition, based on scores from physicians, the average score for the coronary artery artifact correction of the output images is higher. CONCLUSIONS: This study demonstrates that the dual-zone GAN has the excellent ability to correct motion artifacts in the coronary arteries and maintain the overall characteristics of CCTA clinical images.


Subject(s)
Artifacts , Computed Tomography Angiography , Computed Tomography Angiography/methods , Coronary Angiography/methods , Humans , Motion , Signal-To-Noise Ratio , Tomography, X-Ray Computed/methods
13.
Quant Imaging Med Surg ; 11(2): 749-762, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33532274

ABSTRACT

BACKGROUND: Reducing the radiation tracer dose and scanning time during positron emission tomography (PET) imaging can reduce the cost of the tracer, reduce motion artifacts, and increase the efficiency of the scanner. However, the reconstructed images to be noisy. It is very important to reconstruct high-quality images with low-count (LC) data. Therefore, we propose a deep learning method called LCPR-Net, which is used for directly reconstructing full-count (FC) PET images from corresponding LC sinogram data. METHODS: Based on the framework of a generative adversarial network (GAN), we enforce a cyclic consistency constraint on the least-squares loss to establish a nonlinear end-to-end mapping process from LC sinograms to FC images. In this process, we merge a convolutional neural network (CNN) and a residual network for feature extraction and image reconstruction. In addition, the domain transform (DT) operation sends a priori information to the cycle-consistent GAN (CycleGAN) network, avoiding the need for a large amount of computational resources to learn this transformation. RESULTS: The main advantages of this method are as follows. First, the network can use LC sinogram data as input to directly reconstruct an FC PET image. The reconstruction speed is faster than that provided by model-based iterative reconstruction. Second, reconstruction based on the CycleGAN framework improves the quality of the reconstructed image. CONCLUSIONS: Compared with other state-of-the-art methods, the quantitative and qualitative evaluation results show that the proposed method is accurate and effective for FC PET image reconstruction.

14.
Research (Wash D C) ; 2021: 9760398, 2021.
Article in English | MEDLINE | ID: mdl-38617380

ABSTRACT

Benefiting from treating diseases at the genetic level, gene therapy has been considered a new revolution in the biomedical field. However, the extracellular and intracellular barriers during gene transport such as enzymatic degradation and endo-/lysosomal sequestration significantly compromise the therapeutic efficacy. Though photochemical internalization (PCI) has emerged as a promising approach for causing endo-/lysosomal leakage with translocation of the internalized molecules into the cytosol, its effect is still unsatisfactory due to the insufficient light penetration depth. Here, we develop tumor microenvironment-specific enhanced gene delivery by means of ROS generated from the in situ cascaded catalytic reactions in tumors involving GOx-mediated redox reaction and Mn2+-mediated Fenton-like reaction. The efficient enzymatic protection and successful endo-/lysosomal escape of cargo gene complexes have been demonstrated. Moreover, anti-Twist siRNA-loaded G@MMSNs-P exhibit tumor-specific biodegradation, excellent T1-weighted MR imaging, and significant inhibitory effects against breast cancer growth and pulmonary metastasis.

15.
Quant Imaging Med Surg ; 10(9): 1823-1836, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32879860

ABSTRACT

BACKGROUND: Simultaneous magnetic resonance (MR) acoustic radiation force imaging (ARFI) and MR thermometry (MRT) (STARFI) based on coherent echo-shifted (cES) sequence was proposed and comprehensively compared to radiofrequency (RF)-spoiled gradient echo (spGRE) STARFI. METHODS: Through use of delicately designed gradients, a collection of echoes was delayed by one repetition time (TR) cycle. The crusher gradient after readout (RO) was used as the displacement encoding gradient (DEG). The sequence was intrinsically sensitive to temperature. High-intensity focused ultrasound (HIFU) pulses were interleaved ON/OFF in successive TRs to separate the phase changes induced by displacement due to acoustic radiation force (ARF) impulses and temperature. Bloch simulation was performed to study the phase sensitivity to displacement of the proposed cES STARFI and spGRE STARFI. The proposed cES sequence was evaluated and compared to spGRE STARFI in ex vivo porcine muscle and ex vivo porcine brain. RESULTS: The minimally achievable TR of cES STARFI was shorter than that of spGRE STARFI, indicating that the cES sequence was more time efficient. It was verified through Bloch simulation and ex vivo experiments that the phase sensitivity to displacement of cES STARFI was higher than that of spGRE STARFI. The optimal trigger delays of cES STARFI and spGRE STARFI in ex vivo porcine muscle were toffset =-2 and -1 ms, respectively. The displacement-induced phase change to acoustic pressure slopes of cES STARFI were 0.079, 0.079, and 0.047 rad/Mpa across the three muscle samples, while the slopes of spGRE STARFI were only 0.047, 0.052, and 0.027 rad/Mpa. The maximum temperature difference between cES STARFI and spGRE STARFI was 1.1 °C. In ex vivo porcine brain, both the displacement-induced phase-to-noise ratio (PNRd) and the temperature uncertainty of cES STARFI were better than those of spGRE STARFI (P<0.05). The temperature and displacement-induced phase change maps of cES STARFI and spGRE STARFI during HIFU treatment were in good accordance in time and spatial location. CONCLUSIONS: The cES STARFI sequence can provide simultaneous MR-ARFI and temperature measurements during pulsed HIFU applications. Though the exact displacement cannot be quantified directly, the sequence showed increased phase sensitivity compared with the spGRE sequence and provided efficient visualization of the focal spot. cES STARFI could therefore be a desirable alternative to spGRE STARFI in practical applications.

16.
iScience ; 23(5): 101066, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32361593

ABSTRACT

Ultrasound stimulation has recently emerged as a non-invasive method for modulating brain activity in animal and human studies with healthy subjects. Whether brain diseases such as Alzheimer's disease, epilepsy, and depression can be treated using ultrasound stimulation still needs to be explored. Recent studies have reported that ultrasound stimulation suppressed epileptic seizures in a rodent model of epilepsy. These findings raise the crucial question of whether ultrasound stimulation can inhibit seizures in non-human primates with epilepsy. Here, we addressed this critical question. We confirmed that ultrasound stimulation significantly reduced the frequency of seizures in acute epileptic monkeys. Furthermore, the results showed that the number and duration of seizures were reduced, whereas the inter-seizure interval was increased after ultrasound stimulation. Besides, no significant brain tissue damage was observed by T2-weighted MR imaging. Our results are of great importance for future clinical applications of ultrasound neuromodulation in patients with epilepsy.

17.
Magn Reson Imaging ; 65: 37-44, 2020 01.
Article in English | MEDLINE | ID: mdl-31655140

ABSTRACT

Signal-to-noise ratio (SNR) is a critical factor in MR-guided high-intensity focused ultrasound (HIFU) for local heating, which can affect the accuracy of temperature measurement. In order to achieve high SNR and higher temporal resolution, dedicated coil arrays for MR-guided HIFU applications need to be developed. In this work, a flexible 9-channel coil array was designed, and constructed at 3 T to achieve fast temperature mapping for MR-guided HIFU applications on rabbit leg muscle. Coil performance was evaluated for SNR, and parallel imaging capability by in-vivo studies. Compared to a commercially available 4-channel flexible coil array, the dedicated 9-channel coil array has a much higher SNR, with at least a 2.6-fold increment in the region of interest (ROI). The inverse g-factors maps demonstrated that the dedicated 9-channel coil array has a better parallel imaging capability than the Flex Small 4. With accelerations normal to the array direction, both coil arrays showed much higher g-factors than those of accelerations along the array direction. Room temperature mapping was implemented to evaluate the temperature measurement accuracy by in-vivo experiments. The precisions of the 9-channel coil, ±0.18 °C for un-acceleration and ±â€¯0.56 °C for acceleration at R = 2 × 2, both improved by an order of magnitude than these of the 4-channel coil, which were ±â€¯1.45 °C for un-acceleration and ±â€¯3.52 °C for acceleration at R = 2 × 2. In the fast temperature imaging on the rabbit leg muscle with heating, a high temporal resolution of 3.3 s with a temperature measurement precision of ±0.56 °C has been achieved using the dedicated 9-channel coil. This study demonstrates that the dedicated 9-channel coil array for rabbit leg imaging provides improved performance in SNR, parallel imaging capability, and the accuracy of temperature measurement compared to a commercial 4-channel coil, and it also achieves fast temperature mapping in practical MR-guided HIFU applications.


Subject(s)
High-Intensity Focused Ultrasound Ablation/methods , Imaging, Three-Dimensional/instrumentation , Imaging, Three-Dimensional/methods , Magnetic Resonance Imaging, Interventional/instrumentation , Magnetic Resonance Imaging, Interventional/methods , Thermometry/instrumentation , Thermometry/methods , Animals , Models, Animal , Rabbits , Signal-To-Noise Ratio
18.
IEEE Trans Biomed Eng ; 67(8): 2317-2327, 2020 08.
Article in English | MEDLINE | ID: mdl-31831406

ABSTRACT

OBJECTIVE: The purpose of this article was to build a radio frequency (RF) coil system to achieve high vessel wall image quality with coverage extending from the aortic arch to the intracranial vessels. METHODS: A 48-channel coil system was built and characterized at a 3 tesla (T) Magnetic Resonance Imaging (MRI) scanner (uMR 790, Shanghai United Imaging Healthcare, Shanghai, China). The coil's performance was compared with a commercially available 36-channel coil system. By human studies, signal-to-noise ratio (SNR) units were evaluated and g-factors were calculated in the transverse planes of the brain and neck regions. RESULTS: The SNR was increased by at least 28% in the brain region and up to fourfold in the neck region. The average g-factor with the acceleration factor, R = 3, was lowered by 21% in the transverse plane of the neck region. Intracranial and carotid arterial wall images with an isotropic spatial resolution of 0.63 mm were acquired within 7.7 minutes and thoracic aorta wall images with an isotropic spatial resolution of 1.1 mm were acquired within 2.7 minutes with the 48-channel coil system. The vessel wall can be more clearly visualized with the 48-channel coil system compared with the 36-channel coil system. CONCLUSION: A 48-channel coil system was developed and demonstrated superior performance for vessel wall imaging at the intracranial and cervical carotid arteries compared with a commercial 36-channel coil. SIGNIFICANCE: The 48-channel coil system is potentially useful for clinical diagnostics, especially when attempting to diagnose ischemic stroke.


Subject(s)
Magnetic Resonance Imaging , Radio Waves , Carotid Arteries/diagnostic imaging , China , Humans , Phantoms, Imaging , Signal-To-Noise Ratio
19.
Biomater Sci ; 7(7): 3007-3015, 2019 Jun 25.
Article in English | MEDLINE | ID: mdl-31112151

ABSTRACT

Glioblastoma (GBM) is a deadly brain tumor with poor prognosis and high mortality in patients. Given the low efficacy and serious side effects of current GBM therapy compared to those of conventional surgery, chemotherapy and radiation therapy, the development of a novel method for GBM management is very urgent. Sonodynamic therapy (SDT) has gained considerable attention in GBM therapy due to the advantages of deep tissue penetration and high biosafety. However, the low reactive oxygen species (ROS) generation efficacy of SDT has generally limited further applications and clinical translation. In this work, we report the simultaneous application of focused ultrasound-induced moderate thermal treatment (42 °C) and SDT for synergistic enhancement against GBM. Manganese ion (Mn2+)-chelated human serum albumin (HSA)-chlorin e6 (Ce6) nanoassemblies (HCM NAs) as targeting nanosonosensitizers were prepared using an assembly strategy. Our studies indicated that the HCM NAs had excellent T1-weighted contrast performance (12.2 mM-1 s-1) compared to that of clinically used Magnevist (4.3 mM-1 s-1) and achieved highly selective in vitro cell recognition and in vivo tumor-targeting magnetic resonance (MR) and fluorescence (FL) imaging with a signal-to-background ratio of 13.5 at 24 h post injection. Upon imaging-guided focused ultrasound irradiation, the temperature and reactive oxygen species (ROS) content of the tumor region increased simultaneously over time, achieving synergistic effects. The brain tumors were completely suppressed in subcutaneous mouse models of glioma, and the antitumor effect was greatly improved in orthotopic mouse models of glioma. It suggest that the synergistic treatment with moderate temperature and SDT induced by imaging-guided focused ultrasound is a promising platform against GMB, holds great potential in clinical settings.


Subject(s)
Glioblastoma/diagnostic imaging , Glioblastoma/therapy , Magnetic Resonance Imaging , Nanostructures/chemistry , Temperature , Ultrasonic Therapy/methods , Animals , Biological Transport , Cell Line, Tumor , Chlorophyllides , Combined Modality Therapy , Glioblastoma/metabolism , Glioblastoma/pathology , Humans , Male , Mice , Porphyrins/chemistry , Porphyrins/metabolism , Porphyrins/pharmacology , Porphyrins/therapeutic use , Serum Albumin, Human/chemistry
20.
Quant Imaging Med Surg ; 9(2): 247-262, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30976549

ABSTRACT

BACKGROUND: Multi-echo gradient echo (GRE) sequence with bipolar readout gradients can reduce achievable echo spacing and thus have higher acquisition efficiency compared to unipolar readout gradients for fat fraction (FF) quantification. However, the eddy current induced phase (EC-phase) in a bipolar sequence corrupts the phase consistency between echoes and can lead to inaccurate fat quantification. METHODS: A hierarchical iterative linear-fitting algorithm (HILA) was proposed for EC-phase correction. In each iteration, image blocks were divided into sub-blocks. The EC-phase was fitted to a linear model in each sub-block. The estimated linear phase in each sub-block was then used as a starting value for the next iteration. Finally, a weighted average over all levels was calculated to obtain the final EC-phase map. Monte Carlo simulations were adopted to evaluate how the residual EC-phase would affect FF quantification accuracy. The performance of the proposed HILA method was then compared to the well-established unipolar acquisition method in phantom and in vivo experiments on 3T. RESULTS: The simulations showed that certain ΔTE values, such as ΔTE =~0.80/1.50/1.95 ms, allowed for FF estimation that were relatively robust to the residual EC-phase ranging from -2π/15 to 2π/15 for a 6-echo bipolar acquisition on 3T. The phantom study showed that the maximum mean FF error, after EC-phase correction with the proposed HILA method, was smaller than 2%, implying that HILA can approximate the high-order term of the EC-phase through step-wise linear fitting. There was no significant difference between the FFs from bipolar and unipolar acquisitions on the two MR systems in the in vivo experiments. CONCLUSIONS: The proposed HILA method provides a simple and efficient EC-phase correction method for bipolar acquisition without acquiring additional data. The appropriate choice of TEs may further reduce the effect of the residual EC-phase on accurate FF quantification with bipolar readout sequence.

SELECTION OF CITATIONS
SEARCH DETAIL
...