Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Ther Med ; 22(5): 1275, 2021 Nov.
Article in English | MEDLINE | ID: mdl-34594412

ABSTRACT

Oxidized low-density lipoprotein (ox-LDL) induces endothelial cell apoptosis and dysfunction. Statins are drugs that are clinically used to lower serum cholesterol levels, and they have been shown to exert vascular protective effects. In the present study, human umbilical vein endothelial cells were transfected with scramble control siRNA or siRNA specific for glutathione peroxidase (GPx)4 or cystine-glutamate antiporter (xCT). MTT, Matrigel and Transwell assays were used to evaluate cell proliferation, tube formation and migration, respectively. The levels of TNF-α, IL-α, 4-hydroxynonenal, GPx4 and xCT expression were detected by western blot analysis. It was demonstrated that ox-LDL promoted cytokine production and reduced the proliferation, migration and angiogenesis of endothelial cells. It was also observed that ox-LDL decreased GPx4 and xCT expression and induced ferroptosis. Furthermore, the inhibition of ferroptosis by deferoxamine mesylate attenuated ox-LDL-induced endothelial cell dysfunction and restored ox-LDL-decreased GPx4 and xCT expression. Consistent with these results, GPx4 and xCT knockdown by siRNA transfection aggravated ox-LDL-induced endothelial cell dysfunction and inhibition of proliferation. To the best of our knowledge, the present study was the first to discover that fluvastatin may protect endothelial cells from ox-LDL-induced ferroptosis and dysfunction. Furthermore, knockdown of GPx4 and xCT expression blunted the protective effects of fluvastatin on ox-LDL-treated endothelial cells. These data indicated a novel function of fluvastatin in the protection of endothelial cells from ox-LDL-induced ferroptosis, the mechanism of which involves the regulation of GPx4 and xCT.

2.
J Cell Mol Med ; 24(21): 12355-12367, 2020 11.
Article in English | MEDLINE | ID: mdl-32961025

ABSTRACT

Diabetes is a disorder of glucose metabolism, and over 90% are type 2 diabetes. Diabetic cardiomyopathy (DCM) is one of the type 2 diabetes complications, usually accompanied by changes in myocardial structure and function, together with cardiomyocyte apoptosis. Our study investigated the effect of curcumin on regulating oxidative stress (OS) and apoptosis in DCM. In vivo, diabetes was induced in an experimental rat model by streptozoticin (STZ) together with high-glucose and high-fat (HG/HF) diet feeding. In vitro, H9c2 cardiomyocytes were cultured with high-glucose and saturated free fatty acid palmitate. Curcumin was orally or directly administered to rats or cells, respectively. Streptozoticin -induced diabetic rats showed metabolism abnormalities and elevated markers of OS (superoxide dismutase [SOD], malondialdehyde [MDA], gp91phox , Cyt-Cyto C), enhanced cell apoptosis (Bax/Bcl-2, Cleaved caspase-3, TUNEL-positive cells), together with reduced Akt phosphorylation and increased Foxo1 acetylation. Curcumin attenuated the myocardial dysfunction, OS and apoptosis in the heart of diabetic rats. Curcumin treatment also enhanced phosphorylation of Akt and inhibited acetylation of Foxo1. These results strongly suggest that apoptosis was increased in the heart of diabetic rats, and curcumin played a role in diabetic cardiomyopathy treatment by modulating the Sirt1-Foxo1 and PI3K-Akt pathways.


Subject(s)
Apoptosis/drug effects , Curcumin/pharmacology , Diabetic Cardiomyopathies/drug therapy , Oxidative Stress/drug effects , Signal Transduction/drug effects , Animals , Blood Glucose/metabolism , Cell Survival , Diabetes Mellitus, Experimental , Male , Myocardium/metabolism , Myocytes, Cardiac/metabolism , Nerve Tissue Proteins/metabolism , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , Proto-Oncogene Proteins c-akt/metabolism , Rats , Rats, Sprague-Dawley , Sirtuin 1/metabolism
3.
Epigenomics ; 12(5): 439-454, 2020 03.
Article in English | MEDLINE | ID: mdl-32043895

ABSTRACT

Aim: We aimed to identify the expression profile and role of circular RNAs (circRNAs) in coronary heart disease (CHD). Materials & methods: We performed sequence analysis of circRNAs in peripheral blood mononuclear cells of 70 CHD patients and 30 controls. Eight selected circRNAs were validated using quantitative real-time polymerase chain reaction (qRT-PCR) in human atherosclerotic coronary arteries. Results: In total, 2283 downregulated and 85 upregulated circRNAs were identified in CHD. Parental genes of top 100 dysregulated-circRNAs are related to metabolism and protein modification, and 12 circRNAs might upregulate their CHD-related parental genes through miRNA sponges. Of the eight circRNAs validated in atherosclerotic coronary arteries by qRT-PCR, six were consistent with sequencing results of peripheral blood mononuclear cells. Conclusion: As potential ceRNAs, dysregulated circRNAs may be involved in CHD pathophysiology.


Subject(s)
Computational Biology , Coronary Disease/genetics , Gene Expression Profiling , RNA, Circular , Transcriptome , Biomarkers , Case-Control Studies , Computational Biology/methods , Coronary Disease/metabolism , Disease Susceptibility , Gene Expression Profiling/methods , Gene Expression Regulation , Humans
4.
Front Pharmacol ; 9: 464, 2018.
Article in English | MEDLINE | ID: mdl-29867472

ABSTRACT

Atherosclerosis (AS) in diabetic patients is often associated with low stability, which might be largely attributed to unfavorable macrophage polarization and increased inflammatory response induced by hyperglycaemia. Ginsenoside Rg3 is one of the main active principles of Panax Ginseng, which has been reported to be a natural ligand of peroxisome proliferator-activated receptor-gamma (PPARγ), a key nuclear transcriptional factor involved in inflammation and macrophage differentiation. However, it remains unclear if Rg3 could exert protective effects on plaque stability in diabetes. In this study, we investigated the role of ginsenoside 20(S)-Rg3 in macrophage polarization and AS plaque stability using advanced glycation end products-treated macrophages and diabetic AS mice models. In vitro, advanced glycation end products (AGEs) treatment promoted the expression of proinflammatory molecules and M1 surface markers, whereas 20(S)-Rg3 could reverse the M1 polarization to the M2 phenotype. In vivo, the administration of 20(S)-Rg3 promoted AS lesion stability and reduced the plaque burden, accompanied by increased M2 macrophages and reduced M1 macrophages. In addition, PPARγ antagonist GW9662 co-administration mostly blocked these effects, suggesting the important role of PPARγ pathways in mediating 20(S)-Rg3 effects in macrophage polarization and atherosclerosis progression. Together, these results demonstrated an immunomodulatory role of ginsenoside 20(S)-Rg3 in promoting macrophages to a profile of the M2 type through PPARγ-dependent mechanisms, and indicated a potential role of 20(S)-Rg3 in the prevention and treatment of diabetic atherosclerosis.

5.
J Cell Mol Med ; 22(6): 3202-3214, 2018 06.
Article in English | MEDLINE | ID: mdl-29566305

ABSTRACT

Ginsenoside 20(R/S)-Rg3, as a natural peroxisome proliferator-activated receptor gamma (PPARγ) ligand, has been reported to exhibit differential biological effects. It is of great interest to understand the stereochemical selectivity of 20(R/S)-Rg3 and explore whether differential PPARγ activation by Rg3 stereoisomers, if it exists, could lead to differential physiological outcome and therapeutic effects in diabetic atherosclerosis. Here, we investigated the binding modes of 20(R/S)-Rg3 stereoisomers in the PPARγ ligand-binding domain (PPARγ-LBD) using molecular modelling and their effects on smooth muscle cell proliferation and migration induced by advanced glycation end products (AGEs). The results revealed that 20(S)-Rg3 exhibited stronger antiproliferative and antimigratory effects due to stronger PPARγ activation. To validate the in vitro results, we used a mice model with diabetic atherosclerosis and obtained that 20(S)-Rg3 markedly reduced the plaque size secondary to reducing the proliferation and migration of VSMCs, while the plaques were more stable due to improvements in other plaque compositions. The results shed light on the structural difference between Rg3 stereoisomers that can lead to significant differential physiological outcome, and the (S)-isomer seems to be the more potent isomer to be developed as a promising drug for diabetic atherosclerosis.


Subject(s)
Atherosclerosis/drug therapy , Diabetes Complications/drug therapy , Ginsenosides/administration & dosage , PPAR gamma/genetics , Animals , Atherosclerosis/etiology , Atherosclerosis/genetics , Atherosclerosis/pathology , Cell Movement/drug effects , Cell Proliferation/drug effects , Diabetes Complications/genetics , Diabetes Complications/pathology , Ginsenosides/chemistry , Glycation End Products, Advanced/chemistry , Glycation End Products, Advanced/genetics , Humans , Ligands , Mice , Models, Molecular , Muscle, Smooth, Vascular/drug effects , Muscle, Smooth, Vascular/pathology , Myocytes, Smooth Muscle/drug effects , Myocytes, Smooth Muscle/pathology , PPAR gamma/chemistry , Protein Domains/drug effects , Stereoisomerism
6.
J Cell Mol Med ; 22(3): 1475-1488, 2018 03.
Article in English | MEDLINE | ID: mdl-29266779

ABSTRACT

Diabetic cardiomyopathy, a major cardiac complication, contributes to heart remodelling and heart failure. Our previous study discovered that CCAAT/enhancer-binding protein ß (C/EBPß), a transcription factor that belongs to a family of basic leucine zipper transcription factors, interacts with the angiotensin-converting enzyme 2 (ACE2) promoter sequence in other disease models. Here, we aimed to determine the role of C/EBPß in diabetes and whether ACE2 expression is regulated by C/EBPß. A type 1 diabetic mouse model was generated by an intraperitoneal injection of streptozotocin. Diabetic mice were injected with a lentivirus expressing either C/EBPß or sh-C/EBPß or treated with valsartan after 12 weeks to observe the effects of C/EBPß. In vitro, cardiac fibroblasts and cardiomyocytes were treated with high glucose (HG) to investigate the anti-fibrosis, anti-apoptosis and regulatory mechanisms of C/EBPß. C/EBPß expression was down-regulated in diabetic mice and HG-induced cardiac neonatal cells. C/EBPß overexpression significantly attenuated collagen deposition and cardiomyocyte apoptosis by up-regulating ACE2 expression. The molecular mechanism involved the binding of C/EBPß to the ACE2 promoter sequence. Although valsartan, a classic angiotensin receptor blocker, relieved diabetic complications, the up-regulation of ACE2 expression by C/EBPß overexpression may exert greater beneficial effects on patients with diabetic cardiomyopathy.


Subject(s)
CCAAT-Enhancer-Binding Protein-beta/genetics , Diabetes Mellitus, Experimental/therapy , Diabetic Cardiomyopathies/prevention & control , Fibroblasts/metabolism , Myocytes, Cardiac/metabolism , Peptidyl-Dipeptidase A/genetics , Angiotensin II Type 1 Receptor Blockers/pharmacology , Angiotensin-Converting Enzyme 2 , Animals , Apoptosis/genetics , Blood Glucose/metabolism , CCAAT-Enhancer-Binding Protein-beta/antagonists & inhibitors , CCAAT-Enhancer-Binding Protein-beta/metabolism , Cell Line , Collagen/antagonists & inhibitors , Collagen/genetics , Collagen/metabolism , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/genetics , Diabetes Mellitus, Experimental/pathology , Diabetic Cardiomyopathies/genetics , Diabetic Cardiomyopathies/pathology , Fibroblasts/cytology , Fibroblasts/drug effects , Gene Expression Regulation , Glucose/pharmacology , Male , Mice , Mice, Inbred C57BL , Myocardium/metabolism , Myocardium/pathology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/pathology , Peptidyl-Dipeptidase A/metabolism , Primary Cell Culture , Protein Binding , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Rats , Streptozocin , Valsartan/pharmacology
7.
J Mol Cell Cardiol ; 114: 243-252, 2018 01.
Article in English | MEDLINE | ID: mdl-29196099

ABSTRACT

AIMS: Cardiac pressure and humoral factors induce cardiac hypertrophy and fibrosis, which are characterized by increased stiffness, reduced contractility and altered perfusion. Angiotensin II (AngII) is well known to promote this pathology. Angiotensin-converting enzyme (ACE) 2, which cleaves AngII and forms Ang-(1-7), exerts protective anti-hypertrophy and anti-fibrosis effects. A disintegrin and metalloproteinase 17 (ADAM17), a membrane-bound enzyme reported to cleave ACE2, may participate in the pathological process of AngII perfusion-induced heart damage. However, researchers have not clearly determined whether dickkopf-3 (DKK3) regulates the ADAM17/ACE2 pathway and, if so, whether DKK3-mediated regulation is related to the glycogen synthase kinase-3ß (GSK-3ß)/ß-catenin pathway. In this study, we explored whether DKK3 overexpression ameliorates the development of AngII-induced cardiac fibrosis and hypertrophy through the ADAM17/ACE2 and GSK-3ß/ß-catenin pathways. METHODS: Mice were injected with a DKK3-overexpressing adenovirus or vehicle and then infused with AngII or saline using subcutaneously implanted mini-pumps for four weeks. Hearts were stained with hematoxylin-eosin, Masson's trichrome and immunohistochemical markers for histology. Primary fibroblasts were treated with the adenovirus and AngII and then examined using western blotting, EdU (5-ethynyl-2'-deoxyuridine) assays and immunofluorescence. Additionally, siRNA silencing was performed to study the role of DKK3 and the involved pathways. RESULTS: AngII-induced cardiac hypertrophy and interstitial and perivascular fibrosis were less severe in DKK3-overexpressing mice than in control mice. Moreover, the expression levels of fibrotic genes, such as collagen I and III, and the hypertrophic genes atrial natriuretic peptide (ANP) and beta-myosin heavy chain (ß-MHC) were decreased. DKK3 overexpression also exerted a protective effect by inhibiting ADAM17 phosphorylation, thus increasing ACE2 expression and subsequently promoting AngII degradation. Furthermore, this process was mediated by the inhibition of GSK-3ß and ß-catenin and decreased translocation of ß-catenin to the nucleus. On the other hand, the DKK3 knockdown by siRNA achieved opposite results. CONCLUSION: DKK3 overexpression substantially alleviated AngII infusion-induced cardiac hypertrophy and fibrosis by regulating ADAM17/ACE2 pathway activity and inhibiting the GSK-3ß/ß-catenin pathway.


Subject(s)
ADAM17 Protein/metabolism , Angiotensin II/pharmacology , Cardiomegaly/metabolism , Cardiomegaly/pathology , Glycogen Synthase Kinase 3 beta/metabolism , Intercellular Signaling Peptides and Proteins/metabolism , Signal Transduction , beta Catenin/metabolism , Adaptor Proteins, Signal Transducing , Angiotensin I , Angiotensin-Converting Enzyme 2 , Animals , Animals, Newborn , Apoptosis/drug effects , Cardiomegaly/physiopathology , Cell Proliferation/drug effects , Disease Models, Animal , Fibroblasts/drug effects , Fibroblasts/metabolism , Fibroblasts/pathology , Fibrosis , Inflammation/pathology , Matrix Metalloproteinases/metabolism , Mice, Inbred C57BL , Peptide Fragments , Peptidyl-Dipeptidase A/metabolism , Perfusion , Phosphorylation/drug effects , Smad3 Protein/metabolism , Transforming Growth Factor beta1/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...