Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 24(11)2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38894387

ABSTRACT

As remote sensing technology has advanced, the use of satellites and similar technologies has become increasingly prevalent in daily life. Now, it plays a crucial role in hydrology, agriculture, and geography. Nevertheless, because of the distinct qualities of remote sensing, including expansive scenes and small, densely packed targets, there are many challenges in detecting remote sensing objects. Those challenges lead to insufficient accuracy in remote sensing object detection. Consequently, developing a new model is essential to enhance the identification capabilities for objects in remote sensing imagery. To solve these constraints, we have designed the OD-YOLO approach that uses multi-scale feature fusion to improve the performance of the YOLOv8n model in small target detection. Firstly, traditional convolutions have poor recognition capabilities for certain geometric shapes. Therefore, in this paper, we introduce the Detection Refinement Module (DRmodule) into the backbone architecture. This module utilizes Deformable Convolutional Networks and the Hybrid Attention Transformer to strengthen the model's capability for feature extraction from geometric shapes and blurred objects effectively. Meanwhile, based on the Feature Pyramid Network of YOLO, at the head of the model framework, this paper enhances the detection capability by introducing a Dynamic Head to strengthen the fusion of different scales features in the feature pyramid. Additionally, to address the issue of detecting small objects in remote sensing images, this paper specifically designs the OIoU loss function to finely describe the difference between the detection box and the true box, further enhancing model performance. Experiments on the VisDrone dataset show that OD-YOLO surpasses the compared models by at least 5.2% in mAP50 and 4.4% in mAP75, and experiments on the Foggy Cityscapes dataset demonstrated that OD-YOLO improved mAP by 6.5%, demonstrating outstanding results in tasks related to remote sensing images and adverse weather object detection. This work not only advances the research in remote sensing image analysis, but also provides effective technical support for the practical deployment of future remote sensing applications.

2.
Sensors (Basel) ; 24(9)2024 Apr 27.
Article in English | MEDLINE | ID: mdl-38732896

ABSTRACT

Accurate and fast recognition of vehicle license plates from natural scene images is a crucial and challenging task. Existing methods can recognize license plates in simple scenarios, but their performance degrades significantly in complex environments. A novel license plate detection and recognition model YOLOv5-PDLPR is proposed, which employs YOLOv5 target detection algorithm in the license plate detection part and uses the PDLPR algorithm proposed in this paper in the license plate recognition part. The PDLPR algorithm is mainly designed as follows: (1) A Multi-Head Attention mechanism is used to accurately recognize individual characters. (2) A global feature extractor network is designed to improve the completeness of the network for feature extraction. (3) The latest parallel decoder architecture is adopted to improve the inference efficiency. The experimental results show that the proposed algorithm has better accuracy and speed than the comparison algorithms, can achieve real-time recognition, and has high efficiency and robustness in complex scenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...