Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Publication year range
1.
J Trace Elem Med Biol ; 30: 118-23, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25575693

ABSTRACT

Alzheimer's disease (AD) as a neurodegenerative brain disorder is a devastating pathology leading to disastrous cognitive impairments and dementia, associated with major social and economic costs to society. Iron can catalyze damaging free radical reactions. With age, iron accumulates in brain frontal cortex regions and may contribute to the risk of AD. In this communication, we investigated the age-related brain iron load changes in the frontal cortex of 6- and 12-month-old C57BL/6J (C57) and APPswe/PS1ΔE9 (APP/PS1) double transgenic mouse by using graphite furnace atomic absorption spectrometry (GFAAS) and Perls' reaction. In the present study, we also evaluated the age-related changes of DMT1 and FPN1 by using Western blot and qPCR. We found that compared with 6-month-old APP/PS1 mice and the 12-month-old C57 mice, the 12-month-old APP/PS1 mice had increased iron load in the frontal cortex. The levels of DMT1 were significantly increased and the FPN1 were significantly reduced in the frontal cortex of the 12-month-old APP/PS1 mice than that in the 6-month-old APP/PS1 mice and 12-month-old C57 mice. We conclude that in AD damage occurs in conjunction with iron accumulation, and the brain iron load associated with loss control of the brain iron metabolism related protein DMT1 and FPN1 expressions.


Subject(s)
Aging/metabolism , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Frontal Lobe/metabolism , Iron/metabolism , Presenilin-1/metabolism , Alzheimer Disease/pathology , Animals , Blotting, Western , Cation Transport Proteins/genetics , Cation Transport Proteins/metabolism , Disease Models, Animal , Frontal Lobe/pathology , Humans , Male , Mice, Inbred C57BL , Mice, Transgenic , RNA, Messenger/genetics , RNA, Messenger/metabolism , Staining and Labeling
2.
Acta Pharmaceutica Sinica ; (12): 1428-1433, 2012.
Article in Chinese | WPRIM (Western Pacific) | ID: wpr-274643

ABSTRACT

The study is to investigate the effect of angiotensin II (Ang II) and its receptor blockers on migration and endothelin-1 (ET-1) expression of rat vascular adventitial fibroblast subpopulations. Vascular adventitial fibroblasts were individually expanded by using cloning rings, and the effects of Ang II on the migration of adventitial fibroblast subpopulations were evaluated by Transwell. Fluorescence quantitative-PCR detected the expression of preproET-1 mRNA induced by Ang II, and its receptor antagonists losartan and PD-123319. The concentration of ET-1 was determined by ELISA. It showed that spindle shaped and epithelioid shaped cells were isolated by using cloning rings, named as spindle cells and round cells. RT-PCR showed that fibroblast subpopulations did not have leukocytes, endothelial cells and smooth muscle cells, namely pure cell lines. Compared with respective control cells, two subpopulations had transferring ability. Ang II significantly improved round cells migration in a concentration-dependent manner, and had no obvious influence on spindle cells migration. Ang II (1 x 10(-8) - 1 x 10(-6) mol x L(-1)) significantly increased the expression of preproET-1 mRNA in round cells (P < 0.01), and had no significant effect on the expression of preproET-1 mRNA in spindle cells. Losartan blocked the expression of preproET-1 mRNA induced by Ang II in round cells, and had no significant effect on the expression of preproET-1 mRNA in spindle cells. The effects of Ang II and ET-1 receptor inhibitors on the release of ET-1 were similar to the expression of preproET-1 mRNA. The results indicate that there are two cell subpopulations: round cells and spindle cells in rat vascular adventitial fibroblasts. Ang II significantly improved cells migration, and increased the expression of ET-1 in round cell subpopulation. It suggested that there may be different migratory mechanisms in two cell subpopulations, and the two subpopulations may play a different role in vascular remodeling and reparative process.


Subject(s)
Animals , Male , Rats , Angiotensin II , Pharmacology , Angiotensin Receptor Antagonists , Pharmacology , Cell Movement , Cells, Cultured , Endothelin-1 , Genetics , Metabolism , Fibroblasts , Cell Biology , Metabolism , Imidazoles , Pharmacology , Losartan , Pharmacology , Pyridines , Pharmacology , RNA, Messenger , Metabolism , Rats, Sprague-Dawley , Vasoconstrictor Agents , Pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...