Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell ; 33(4): 882-900, 2021 05 31.
Article in English | MEDLINE | ID: mdl-33681994

ABSTRACT

Vitamin A deficiency remains prevalent in parts of Asia, Latin America, and sub-Saharan Africa where maize (Zea mays) is a food staple. Extensive natural variation exists for carotenoids in maize grain. Here, to understand its genetic basis, we conducted a joint linkage and genome-wide association study of the US maize nested association mapping panel. Eleven of the 44 detected quantitative trait loci (QTL) were resolved to individual genes. Six of these were correlated expression and effect QTL (ceeQTL), showing strong correlations between RNA-seq expression abundances and QTL allelic effect estimates across six stages of grain development. These six ceeQTL also had the largest percentage of phenotypic variance explained, and in major part comprised the three to five loci capturing the bulk of genetic variation for each trait. Most of these ceeQTL had strongly correlated QTL allelic effect estimates across multiple traits. These findings provide an in-depth genome-level understanding of the genetic and molecular control of carotenoids in plants. In addition, these findings provide a roadmap to accelerate breeding for provitamin A and other priority carotenoid traits in maize grain that should be readily extendable to other cereals.


Subject(s)
Carotenoids/metabolism , Seeds/genetics , Zea mays/genetics , Zea mays/metabolism , Epistasis, Genetic , Genetic Variation , Genome-Wide Association Study , Phenotype , Plant Proteins/genetics , Quantitative Trait Loci , Seeds/metabolism
2.
Plant Genome ; 13(1): e20007, 2020 03.
Article in English | MEDLINE | ID: mdl-33016637

ABSTRACT

Crown rust, caused by Puccinia coronata f. sp. avenae Erikss., is the most important disease impacting cultivated oat (Avena sativa L.). Genetic resistance is the most desirable management strategy. The genetic architecture of crown rust resistance is not fully understood, and previous mapping investigations have mostly ignored temporal variation. A collection of elite oat lines sourced from oat breeding programs in the American Upper Midwest and Canada was genotyped using a high-density genotyping-by-sequencing system and evaluated for crown rust disease severity at multiple time points throughout the growing season in three disease nursery environments. Genome-wide association mapping was conducted for disease severity on each observation date of each trial, area under the disease progress curve for each trial, heading date for each trial, and area under the disease progress curve in a multi-environment model. Crown rust resistance quantitative trait loci (QTL) were detected on linkage groups Mrg05, Mrg12, Mrg15, Mrg18, Mrg20, and Mrg33. None of these QTL were coincident with a days-to-heading QTL detected on Mrg02. Only the QTL detected on Mrg15 was detected in multiple mapping models. The QTL on Mrg05, Mrg12, Mrg18, Mrg20, and Mrg33 were detected on only a single observation date and were not detected on observations just days before and after. This result uncovers the importance of temporal variation in mapping experiments which is usually ignored. It is possible that high density temporal data could be used to more precisely characterize the nature of plant resistance in other systems.


Subject(s)
Avena , Basidiomycota , Avena/genetics , Genome-Wide Association Study , Plant Diseases/genetics , Quantitative Trait Loci
3.
G3 (Bethesda) ; 9(6): 1945-1955, 2019 06 05.
Article in English | MEDLINE | ID: mdl-31010822

ABSTRACT

Rapid development and adoption of biofortified, provitamin A-dense orange maize (Zea mays L.) varieties could be facilitated by a greater understanding of the natural variation underlying kernel color, including as it relates to carotenoid biosynthesis and retention in maize grain. Greater abundance of carotenoids in maize kernels is generally accompanied by deeper orange color, useful for distinguishing provitamin A-dense varieties to consumers. While kernel color can be scored and selected with high-throughput, low-cost phenotypic methods within breeding selection programs, it remains to be well established as to what would be the logical genetic loci to target for selection for kernel color. We conducted a genome-wide association study of maize kernel color, as determined by colorimetry, in 1,651 yellow and orange inbreds from the Ames maize inbred panel. Associations were found with y1, encoding the first committed step in carotenoid biosynthesis, and with dxs2, which encodes the enzyme responsible for the first committed step in the biosynthesis of the isoprenoid precursors of carotenoids. These genes logically could contribute to overall carotenoid abundance and thus kernel color. The lcyE and zep1 genes, which can affect carotenoid composition, were also found to be associated with colorimeter values. A pathway-level analysis, focused on genes with a priori evidence of involvement in carotenoid biosynthesis and retention, revealed associations for dxs3 and dmes1, involved in isoprenoid biosynthesis; ps1 and vp5, within the core carotenoid pathway; and vp14, involved in cleavage of carotenoids. Collectively, these identified genes appear relevant to the accumulation of kernel color.


Subject(s)
Genome, Plant , Genome-Wide Association Study , Genomics , Metabolic Networks and Pathways , Pigmentation , Zea mays/genetics , Zea mays/metabolism , Genetic Association Studies , Genomics/methods , Phenotype , Polymorphism, Single Nucleotide
4.
Theor Appl Genet ; 131(3): 721-733, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29222636

ABSTRACT

KEY MESSAGE: Oat crown rust is one of the most damaging diseases of oat. We identified a new source of resistance and developed KASP and TaqMan markers for selection in breeding programs. A new highly effective resistance to oat crown rust (Puccinia coronata f. sp. avenae) was identified in the diploid oat Avena strigosa PI 258731 and introgressed into hexaploid cultivated oat. Young plants with this resistance show moderate susceptibility, whereas older plant tissues and adult plants are resistant with no virulent isolates encountered in over 8 years of testing. Resistance was incorporated into hexaploid oat by embryo rescue, colchicine chromosome doubling followed by backcrosses with a hexaploid parent, and selection for stable transmission of resistance. To mitigate flag leaf and panicle chlorosis/necrosis associated with the resistance, crosses were made with derived resistant lines to breeding lines of divergent parentage followed by selection. Subsequently, two F2 sister lines, termed MNBT1020-1 and MNBT1021-1, were identified in which the chlorosis/necrosis was reduced. These two lines performed well in replicated multi-location state trials in 2015 and 2016 out-yielding all cultivar entries. Segregating F2:3 plants resulting from crosses of MNBT lines to susceptible parents were genotyped with the oat 6K SNP array, and SNP loci with close linkage to the resistance were identified. KASP assays generated from linked SNPs showed accurate discrimination of the resistance in derivatives of the resistant MNBT lines crossed to susceptible breeding lines. A TaqMan marker was developed and correctly identified homozygous resistance in over 95% of 379 F4 plants when rust was scored in F4:5 plants in the field. Thus, a novel highly effective resistance and associated molecular markers are available for use in breeding, genetic analysis, and functional studies.


Subject(s)
Avena/genetics , Disease Resistance/genetics , Genetic Markers , Plant Diseases/genetics , Avena/microbiology , Basidiomycota , Crosses, Genetic , Genetic Linkage , Genotype , Plant Diseases/microbiology , Polymorphism, Single Nucleotide , Polyploidy
5.
Plant Cell ; 29(10): 2374-2392, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28970338

ABSTRACT

Tocopherols, tocotrienols, and plastochromanols (collectively termed tocochromanols) are lipid-soluble antioxidants synthesized by all plants. Their dietary intake, primarily from seed oils, provides vitamin E and other health benefits. Tocochromanol biosynthesis has been dissected in the dicot Arabidopsis thaliana, which has green, photosynthetic seeds, but our understanding of tocochromanol accumulation in major crops, whose seeds are nonphotosynthetic, remains limited. To understand the genetic control of tocochromanols in grain, we conducted a joint linkage and genome-wide association study in the 5000-line U.S. maize (Zea mays) nested association mapping panel. Fifty-two quantitative trait loci for individual and total tocochromanols were identified, and of the 14 resolved to individual genes, six encode novel activities affecting tocochromanols in plants. These include two chlorophyll biosynthetic enzymes that explain the majority of tocopherol variation, which was not predicted given that, like most major cereal crops, maize grain is nonphotosynthetic. This comprehensive assessment of natural variation in vitamin E levels in maize establishes the foundation for improving tocochromanol and vitamin E content in seeds of maize and other major cereal crops.


Subject(s)
Vitamin E/metabolism , Zea mays/metabolism , Chlorophyll/metabolism , Genome-Wide Association Study , Quantitative Trait Loci/genetics , Tocopherols/metabolism , Tocotrienols/metabolism
6.
G3 (Bethesda) ; 7(5): 1499-1510, 2017 05 05.
Article in English | MEDLINE | ID: mdl-28315831

ABSTRACT

Genomewide selection is hailed for its ability to facilitate greater genetic gains per unit time. Over breeding cycles, the requisite linkage disequilibrium (LD) between quantitative trait loci and markers is expected to change as a result of recombination, selection, and drift, leading to a decay in prediction accuracy. Previous research has identified the need to update the training population using data that may capture new LD generated over breeding cycles; however, optimal methods of updating have not been explored. In a barley (Hordeum vulgare L.) breeding simulation experiment, we examined prediction accuracy and response to selection when updating the training population each cycle with the best predicted lines, the worst predicted lines, both the best and worst predicted lines, random lines, criterion-selected lines, or no lines. In the short term, we found that updating with the best predicted lines or the best and worst predicted lines resulted in high prediction accuracy and genetic gain, but in the long term, all methods (besides not updating) performed similarly. We also examined the impact of including all data in the training population or only the most recent data. Though patterns among update methods were similar, using a smaller but more recent training population provided a slight advantage in prediction accuracy and genetic gain. In an actual breeding program, a breeder might desire to gather phenotypic data on lines predicted to be the best, perhaps to evaluate possible cultivars. Therefore, our results suggest that an optimal method of updating the training population is also very practical.


Subject(s)
Genome, Plant , Plant Breeding/methods , Selection, Genetic , Selective Breeding , Hordeum/genetics , Linkage Disequilibrium , Plant Breeding/standards
7.
Genetics ; 198(4): 1699-716, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25258377

ABSTRACT

Efforts are underway for development of crops with improved levels of provitamin A carotenoids to help combat dietary vitamin A deficiency. As a global staple crop with considerable variation in kernel carotenoid composition, maize (Zea mays L.) could have a widespread impact. We performed a genome-wide association study (GWAS) of quantified seed carotenoids across a panel of maize inbreds ranging from light yellow to dark orange in grain color to identify some of the key genes controlling maize grain carotenoid composition. Significant associations at the genome-wide level were detected within the coding regions of zep1 and lut1, carotenoid biosynthetic genes not previously shown to impact grain carotenoid composition in association studies, as well as within previously associated lcyE and crtRB1 genes. We leveraged existing biochemical and genomic information to identify 58 a priori candidate genes relevant to the biosynthesis and retention of carotenoids in maize to test in a pathway-level analysis. This revealed dxs2 and lut5, genes not previously associated with kernel carotenoids. In genomic prediction models, use of markers that targeted a small set of quantitative trait loci associated with carotenoid levels in prior linkage studies were as effective as genome-wide markers for predicting carotenoid traits. Based on GWAS, pathway-level analysis, and genomic prediction studies, we outline a flexible strategy involving use of a small number of genes that can be selected for rapid conversion of elite white grain germplasm, with minimal amounts of carotenoids, to orange grain versions containing high levels of provitamin A.


Subject(s)
Carotenoids/metabolism , Genome-Wide Association Study , Models, Biological , Zea mays/genetics , Zea mays/metabolism , Biosynthetic Pathways , Genomics , Linkage Disequilibrium , Phenotype , Quantitative Trait Loci , Quantitative Trait, Heritable , Reproducibility of Results
8.
G3 (Bethesda) ; 3(8): 1287-99, 2013 Aug 07.
Article in English | MEDLINE | ID: mdl-23733887

ABSTRACT

Tocopherols and tocotrienols, collectively known as tocochromanols, are the major lipid-soluble antioxidants in maize (Zea mays L.) grain. Given that individual tocochromanols differ in their degree of vitamin E activity, variation for tocochromanol composition and content in grain from among diverse maize inbred lines has important nutritional and health implications for enhancing the vitamin E and antioxidant contents of maize-derived foods through plant breeding. Toward this end, we conducted a genome-wide association study of six tocochromanol compounds and 14 of their sums, ratios, and proportions with a 281 maize inbred association panel that was genotyped for 591,822 SNP markers. In addition to providing further insight into the association between ZmVTE4 (γ-tocopherol methyltransferase) haplotypes and α-tocopherol content, we also detected a novel association between ZmVTE1 (tocopherol cyclase) and tocotrienol composition. In a pathway-level analysis, we assessed the genetic contribution of 60 a priori candidate genes encoding the core tocochromanol pathway (VTE genes) and reactions for pathways supplying the isoprenoid tail and aromatic head group of tocochromanols. This analysis identified two additional genes, ZmHGGT1 (homogentisate geranylgeranyltransferase) and one prephenate dehydratase parolog (of four in the genome) that also modestly contribute to tocotrienol variation in the panel. Collectively, our results provide the most favorable ZmVTE4 haplotype and suggest three new gene targets for increasing vitamin E and antioxidant levels through marker-assisted selection.


Subject(s)
Genome-Wide Association Study , Tocopherols/metabolism , Tocotrienols/metabolism , Zea mays/genetics , Alkyl and Aryl Transferases/genetics , Alkyl and Aryl Transferases/metabolism , Genotype , Haplotypes , Intramolecular Transferases/genetics , Intramolecular Transferases/metabolism , Linkage Disequilibrium , Methyltransferases/genetics , Methyltransferases/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Polymorphism, Single Nucleotide , Zea mays/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...