Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Electron Mater ; 5(4): 2268-2275, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37124237

ABSTRACT

Epitaxy of semiconductor-based quantum well structures is a challenging task since it requires precise control of the deposition at the submonolayer scale. In the case of Ge1-x Sn x alloys, the growth is particularly demanding since the lattice strain and the process temperature greatly impact the composition of the epitaxial layers. In this paper, the realization of high-quality pseudomorphic Ge1-x Sn x layers with Sn content ranging from 6 at. % up to 15 at. % using isothermal processes in an industry-compatible reduced-pressure chemical vapor deposition reactor is presented. The epitaxy of Ge1-x Sn x layers has been optimized for a standard process offering a high Sn concentration at a large process window. By varying the N2 carrier gas flow, isothermal heterostructure designs suitable for quantum transport and spintronic devices are obtained.

2.
ACS Appl Mater Interfaces ; 7(1): 62-7, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25531887

ABSTRACT

We present the epitaxial growth of Ge and Ge0.94Sn0.06 layers with 1.4% and 0.4% tensile strain, respectively, by reduced pressure chemical vapor deposition on relaxed GeSn buffers and the formation of high-k/metal gate stacks thereon. Annealing experiments reveal that process temperatures are limited to 350 °C to avoid Sn diffusion. Particular emphasis is placed on the electrical characterization of various high-k dielectrics, as 5 nm Al2O3, 5 nm HfO2, or 1 nmAl2O3/4 nm HfO2, on strained Ge and strained Ge0.94Sn0.06. Experimental capacitance-voltage characteristics are presented and the effect of the small bandgap, like strong response of minority carriers at applied field, are discussed via simulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...