Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Plant J ; 26(1): 47-58, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11359609

ABSTRACT

The plant hormone ethylene regulates many aspects of growth, development and responses to the environment. The Arabidopsis ETHYLENE INSENSITIVE3 (EIN3) protein is a nuclear-localized component of the ethylene signal-transduction pathway with DNA-binding activity. Loss-of-function mutations in this protein result in ethylene insensitivity in Arabidopsis. To gain a better understanding of the ethylene signal-transduction pathway in tomato, we have identified three homologs of the Arabidopsis EIN3 gene (LeEILs). Each of these genes complemented the ein3-1 mutation in transgenic Arabidopsis, indicating that all are involved in ethylene signal transduction. Transgenic tomato plants with reduced expression of a single LeEIL gene did not exhibit significant changes in ethylene response; reduced expression of multiple tomato LeEIL genes was necessary to reduce ethylene sensitivity significantly. Reduced LeEIL expression affected all ethylene responses examined, including leaf epinasty, flower abscission, flower senescence and fruit ripening. Our results indicate that the LeEILs are functionally redundant and positive regulators of multiple ethylene responses throughout plant development.


Subject(s)
Arabidopsis Proteins , Ethylenes/metabolism , Nuclear Proteins/genetics , Plant Growth Regulators/metabolism , Plant Proteins/genetics , Solanum lycopersicum/genetics , Transcription Factors , Amino Acid Sequence , Antisense Elements (Genetics) , Arabidopsis/genetics , Arabidopsis/metabolism , DNA, Complementary/isolation & purification , DNA-Binding Proteins , Gene Expression Regulation, Plant , Genetic Complementation Test , Solanum lycopersicum/metabolism , Solanum lycopersicum/physiology , Molecular Sequence Data , Mutagenesis , Nuclear Proteins/metabolism , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , RNA, Messenger/analysis , Reverse Transcriptase Polymerase Chain Reaction , Sequence Homology, Amino Acid , Signal Transduction
2.
Mol Plant Microbe Interact ; 14(4): 487-95, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11310736

ABSTRACT

The hypersensitive response (HR) involves rapid death of cells at the site of pathogen infection and is thought to limit pathogen growth through the plant. Ethylene regulates senescence and developmental programmed cell death, but its role in hypersensitive cell death is less clear. Expression of two ethylene receptor genes, NR and LeETR4, is induced in tomato (Lycopersicon esculentum cv. Mill) leaves during an HR to Xanthomonas campestris pv. vesicatoria, with the greatest increase observed in LeETR4. LeETR4 antisense plants previously were shown to exhibit increased sensitivity to ethylene. These plants also exhibit greatly reduced induction of LeETR4 expression during infection and an accelerated HR at inoculum concentrations ranging from 10(5) to 10(7) CFU/ml. Increases in ethylene synthesis and pathogenesis-related gene expression are greater and more rapid in infected LeETR4 antisense plants, indicating an enhanced defense response. Populations of avirulent X. campestris pv. vesicatoria decrease more quickly and to a lower level in the transgenic plants, indicating a greater resistance to this pathogen. Because the ethylene action inhibitor 1-methylcyclopropene alleviates the enhanced HR phenotype in LeETR4 antisense plants, these changes in pathogen response are a result of increased ethylene sensitivity.


Subject(s)
Cell Death/genetics , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Solanum lycopersicum/genetics , Xanthomonas campestris/physiology , Ethylenes/metabolism , Solanum lycopersicum/microbiology , Plants, Genetically Modified/genetics , Plants, Genetically Modified/microbiology , Xanthomonas campestris/pathogenicity
3.
Proc Natl Acad Sci U S A ; 97(10): 5663-8, 2000 May 09.
Article in English | MEDLINE | ID: mdl-10792050

ABSTRACT

The plant hormone ethylene is involved in many developmental processes, including fruit ripening, abscission, senescence, and leaf epinasty. Tomato contains a family of ethylene receptors, designated LeETR1, LeETR2, NR, LeETR4, and LeETR5, with homology to the Arabidopsis ETR1 ethylene receptor. Transgenic plants with reduced LeETR4 gene expression display multiple symptoms of extreme ethylene sensitivity, including severe epinasty, enhanced flower senescence, and accelerated fruit ripening. Therefore, LeETR4 is a negative regulator of ethylene responses. Reduced expression of this single gene affects multiple developmental processes in tomato, whereas in Arabidopsis multiple ethylene receptors must be inactivated to increase ethylene response. Transgenic lines with reduced NR mRNA levels exhibit normal ethylene sensitivity but elevated levels of LeETR4 mRNA, indicating a functional compensation of LeETR4 for reduced NR expression. Overexpression of NR in lines with lowered LeETR4 gene expression eliminates the ethylene-sensitive phenotype, indicating that despite marked differences in structure these ethylene receptors are functionally redundant.


Subject(s)
Ethylenes/metabolism , Genes, Plant , Multigene Family , Plant Proteins/physiology , Receptors, Cell Surface/physiology , Solanum lycopersicum/physiology , Arabidopsis/physiology , Crosses, Genetic , Darkness , Solanum lycopersicum/genetics , Solanum lycopersicum/growth & development , Plant Growth Regulators/physiology , Plant Proteins/genetics , Plants, Genetically Modified , Receptors, Cell Surface/genetics , Rhizobium , Transcription, Genetic
4.
Plant Physiol ; 123(1): 81-92, 2000 May.
Article in English | MEDLINE | ID: mdl-10806227

ABSTRACT

Although ethylene regulates a wide range of defense-related genes, its role in plant defense varies greatly among different plant-microbe interactions. We compared ethylene's role in plant response to virulent and avirulent strains of Xanthomonas campestris pv. vesicatoria in tomato (Lycopersicon esculentum Mill.). The ethylene-insensitive Never ripe (Nr) mutant displays increased tolerance to the virulent strain, while maintaining resistance to the avirulent strain. Expression of the ethylene receptor genes NR and LeETR4 was induced by infection with both virulent and avirulent strains; however, the induction of LeETR4 expression by the avirulent strain was blocked in the Nr mutant. To determine whether ethylene receptor levels affect symptom development, transgenic plants overexpressing a wild-type NR cDNA were infected with virulent X. campestris pv. vesicatoria. Like the Nr mutant, the NR overexpressors displayed greatly reduced necrosis in response to this pathogen. NR overexpression also reduced ethylene sensitivity in seedlings and mature plants, indicating that, like LeETR4, this receptor is a negative regulator of ethylene response. Therefore, pathogen-induced increases in ethylene receptors may limit the spread of necrosis by reducing ethylene sensitivity.


Subject(s)
Gene Expression Regulation, Bacterial , Gene Expression Regulation, Plant , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Solanum lycopersicum/microbiology , Xanthomonas campestris/pathogenicity , Solanum lycopersicum/genetics , Plants, Genetically Modified
5.
Plant Physiol ; 120(1): 165-72, 1999 May.
Article in English | MEDLINE | ID: mdl-10318694

ABSTRACT

The phytohormone ethylene regulates many aspects of plant growth, development, and environmental responses. Much of the developmental regulation of ethylene responses in tomato (Lycopersicon esculentum) occurs at the level of hormone sensitivity. In an effort to understand the regulation of ethylene responses, we isolated and characterized tomato genes with sequence similarity to the Arabidopsis ETR1 (ethylene response 1) ethylene receptor. Previously, we isolated three genes that exhibit high similarity to ETR1 and to each other. Here we report the isolation of two additional genes, LeETR4 and LeETR5, that are only 42% and 40% identical to ETR1, respectively. Although the amino acids known to be involved in ethylene binding are conserved, LeETR5 lacks the histidine within the kinase domain that is predicted to be phosphorylated. This suggests that histidine kinase activity is not necessary for an ethylene response, because mutated forms of both LeETR4 and LeETR5 confer dominant ethylene insensitivity in transgenic Arabidopsis plants. Expression analysis indicates that LeETR4 accounts for most of the putative ethylene-receptor mRNA present in reproductive tissues, but, like LeETR5, it is less abundant in vegetative tissues. Taken together, ethylene perception in tomato is potentially quite complex, with at least five structurally divergent, putative receptor family members exhibiting significant variation in expression levels throughout development.


Subject(s)
Ethylenes/metabolism , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Solanum lycopersicum/genetics , Solanum lycopersicum/metabolism , Amino Acid Sequence , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis/metabolism , Cloning, Molecular , Gene Expression Regulation, Plant , Genes, Plant , Histidine/chemistry , Molecular Sequence Data , Mutagenesis, Site-Directed , Phenotype , Phosphorylation , Phylogeny , Plant Proteins/chemistry , Plants, Genetically Modified , Receptors, Cell Surface/chemistry , Sequence Homology, Amino Acid , Transformation, Genetic
6.
Plant J ; 15(2): 243-52, 1998 Jul.
Article in English | MEDLINE | ID: mdl-9721682

ABSTRACT

Ethylene perception in plants is co-ordinated by multiple hormone receptor candidates sharing sequence commonalties with prokaryotic environmental sensor proteins known as two-component regulators. Two tomato homologs of the Arabidopsis ethylene receptor ETR1 were cloned from a root cDNA library. Both cDNAs, termed LeETR1 and LeETR2, were highly homologous to ETR1, exhibiting approximately 90% deduced amino acid sequence similarity and 80% deduced amino acid sequence identity. LeETR1 and LeETR2 contained all the major structural elements of two-component regulators, including the response regulator motif absent in LeETR3, the gene encoding tomato NEVER RIPE (NR). Using RNase protection analysis, the mRNAs of LeETR1, LeETR2 and NR were quantified in tissues engaged in key processes of the plant life cycle, including seed germination, shoot elongation, leaf and flower senescence, floral abscission, fruit set and fruit ripening. LeETR1 was expressed constitutively in all plant tissues examined. LeETR2 mRNA was expressed at low levels throughout the plant but was induced in imbibing tomato seeds prior to germination and was down-regulated in elongating seedlings and senescing leaf petioles. NR expression was developmentally regulated in floral ovaries and ripening fruit. Notably, hormonal regulation of NR was highly tissue-specific. Ethylene biosynthesis induced NR mRNA accumulation in ripening fruit but not in elongating seedlings or in senescing leaves or flowers. Furthermore, the abundance of mRNAs for all three LeETR genes remained uniform in multiple plant tissues experiencing marked changes in ethylene sensitivity, including the cell separation layer throughout tomato flower abscission.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Multigene Family , Plant Proteins/genetics , Receptors, Cell Surface/genetics , Solanum lycopersicum/genetics , Amino Acid Sequence , Cloning, Molecular , Consensus Sequence , DNA, Complementary , Ethylenes/metabolism , Gene Expression Regulation, Developmental , Gene Library , Solanum lycopersicum/growth & development , Solanum lycopersicum/metabolism , Molecular Sequence Data , Plant Proteins/biosynthesis , Plant Proteins/chemistry , Plant Roots , Receptors, Cell Surface/biosynthesis , Receptors, Cell Surface/chemistry , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid
7.
J Biol Chem ; 273(8): 4293-5, 1998 Feb 20.
Article in English | MEDLINE | ID: mdl-9468474

ABSTRACT

We provide genetic evidence that the production of methanol in tomato fruit is regulated by pectin methylesterase (PME, EC 3.1.1.11), an enzyme that catalyzes demethoxylation of pectins. The role of PME in methanol production in tomato fruit was examined by relating the tissue methanol content to the PME enzymatic activity in wild-type Rutgers and isogenic PME antisense fruits with lowered PME activity. In the wild-type, fruit development and ripening were accompanied by an increase in the abundance of PME protein and activity and a corresponding ripening-related increase in methanol content. In the PME antisense pericarp, the level of methanol was greatly reduced in unripe fruit, and diminished methanol content persisted throughout the ripening process. The close correlation between PME activity and levels of methanol in fruit tissues from wild-type and a PME antisense mutant indicates that PME is the primary biosynthetic pathway for methanol production in tomato fruit. Interestingly, ethanol levels that were low and unchanged during ripening of wild-type tomatoes increased progressively with the ripening of PME antisense fruit. In vitro studies indicate that methanol is a competitive inhibitor of the tomato alcohol dehydrogenase (ADH, EC 1.1.1.1) activity suggesting that ADH-catalyzed production of ethanol may be arrested by methanol accumulation in the wild-type but not in the PME mutant where methanol levels remain low.


Subject(s)
Carboxylic Ester Hydrolases/metabolism , Ethanol/metabolism , Methanol/metabolism , Solanum lycopersicum/metabolism , Solanum lycopersicum/enzymology , Plants, Genetically Modified
8.
Plant Mol Biol ; 29(6): 1101-10, 1995 Dec.
Article in English | MEDLINE | ID: mdl-8616211

ABSTRACT

The effects of extended heat stress on polygalacturonase (PG; EC 3.2.1.15) and pectin methylesterase (PME; EC 3.1.1.11) gene expression at mRNA, protein and activity levels in ripening tomato fruits were investigated. Steady state levels of PG mRNA declined at temperatures of 27 degrees C and above, and a marked reduction in PG protein and activity was observed at temperatures of 32 degrees C and above. Exogenous ethylene treatment did not reverse heat stress-induced inhibition of PG gene expression. Transfer of heat-stressed fruits to 20 degrees C partly restored PG mRNA accumulation, but the rate of PG mRNA accumulation declined exponentially with duration of heat stress. Heat stress-induced inhibition of PME mRNA accumulation was recoverable even after 14 days of heat stress. In fruits held at 34 degrees C, both PG and PME protein and activity continued to accumulate for about 4 days, but thereafter PG protein and activity declined while little change was observed in PME protein and activity. In spite of increases in mRNA levels of both PG and PME during the recovery of heat-stressed fruit at 20 degrees C, levels of PG protein and activity declined in fruits heat-stressed for four or more days while PME protein and activity levels remained unchanged. Collectively, these data suggest that PG gene expression is being gradually and irreversibly shut off during heat stress, while PME gene expression is much less sensitive to heat stress.


Subject(s)
Carboxylic Ester Hydrolases/biosynthesis , Gene Expression Regulation, Plant , Polygalacturonase/biosynthesis , Solanum lycopersicum/physiology , Ethylenes/pharmacology , Gene Expression Regulation, Enzymologic/drug effects , Gene Expression Regulation, Plant/drug effects , Hot Temperature , Kinetics , Solanum lycopersicum/enzymology , Solanum lycopersicum/genetics , RNA, Messenger/analysis , RNA, Messenger/biosynthesis , Time Factors
9.
Plant Physiol ; 106(2): 429-436, 1994 Oct.
Article in English | MEDLINE | ID: mdl-12232340

ABSTRACT

Pectin methylesterase (PME, EC 3.1.1.11) is an ubiquitous enzyme in the plant kingdom; however, its role in plant growth and development is not yet understood. Using transgenic tomato (Lycopersicon esculentum Mill.) fruits that show more than 10-fold reduction in PME activity because of expression of an antisense PME gene, we have investigated the role of PME in tomato fruit ripening. Our results show that reduced PME activity causes an almost complete loss of tissue integrity during fruit senescence but shows little effect on fruit firmness during ripening. Low PME activity in the transgenic fruit pericarp modified both accumulation and partitioning of cations between soluble and bound forms and selectively impaired accumulation of Mg2+ over other major cations. Decreased PME activity was associated with a 30 to 70% decrease in bound Ca2+ and Mg2+ in transgenic pericarp. Levels of soluble Ca2+ increase 10 to 60%, whereas levels of soluble Mg2+ and Na+ are reduced by 20 to 60% in transgenic pericarp. Changes in cation levels associated with lowered PME activity do not affect the rate of respiration or membrane integrity of fruit during ripening. Overall, these results suggest that PME plays a role in determining tissue integrity during fruit senescence, perhaps by regulating cation binding to the cell wall.

10.
Plant Physiol ; 105(1): 199-203, 1994 May.
Article in English | MEDLINE | ID: mdl-12232199

ABSTRACT

We have identified two major groups of pectin methylesterase (PME, EC 3.1.1.11) isoforms in various tissues of tomatoes (Lycopersicon esculentum). These two groups exhibited differential immuno-cross-reactivity with polyclonal antibodies raised against tomato fruit PME or flax callus PME and differences in their accumulation patterns in tissues of wild-type and transgenic tomato plants expressing a PME antisense gene. The group I isoforms with isoelectric points (pls) of 8.2, 8.4, and 8.5 are specific to fruit tissue, where they are the major forms of PME activity. The group II PME isoforms, with pl values of 9 and above, are observed in both vegetative and fruit tissues. The group I isoforms cross-react with polyclonal antibodies raised to a PME isoform purified from fruit, whereas the group II isoforms cross-react with antibodies to a PME purified from flax callus. Expression of a fruit-specific PME anti-sense gene impairs accumulation of the group I PME isoforms, with no apparent effect on the accumulation of the group II PME isoforms. The absence of any noticeable effects on growth and development of transgenic plants suggests that the group I PME isoforms are not involved in plant growth and development and may play a role under special circumstances such as cell separation during fruit ripening.

11.
Plant Cell ; 4(6): 667-679, 1992 Jun.
Article in English | MEDLINE | ID: mdl-12297658

ABSTRACT

Pectin methylesterase (PME, EC 3.1.11) demethoxylates pectins and is believed to be involved in degradation of pectic cell wall components by polygalacturonase in ripening tomato fruit. We have introduced antisense and sense chimeric PME genes into tomato to elucidate the role of PME in fruit development and ripening. Fruits from transgenic plants expressing high levels of antisense PME RNA showed <10% of wild-type PME enzyme activity and undetectable levels of PME protein and mRNA. Lower PME enzyme activity in fruits from transgenic plants was associated with an increased molecular weight and methylesterification of pectins and decreased levels of total and chelator soluble polyuronides in cell walls. The fruits of transgenic plants also contained higher levels of soluble solids than wild-type fruits. This trait was maintained in subsequent generations and segregated in normal Mendelian fashion with the antisense PME gene. These results indicate that reduction in PME enzyme activity in ripening tomato fruits had a marked influence on fruit pectin metabolism and increased the soluble solids content of fruits, but did not interfere with the ripening process.

12.
Plant Physiol ; 97(1): 80-7, 1991 Sep.
Article in English | MEDLINE | ID: mdl-16668419

ABSTRACT

We have purified pectin methylesterase (PME; EC 3.1.11) from mature green (MG) tomato (Lycopersicon esculentum Mill. cv Rutgers) pericarp to an apparent homogeneity, raised antibodies to the purified protein, and isolated a PME cDNA clone from a lambdagtll expression library constructed from MG pericarp poly(A)(+) RNA. Based on DNA sequencing, the PME cDNA clone isolated in the present study is different from that cloned earlier from cv Ailsa Craig (J Ray et al. [1989] Eur J Biochem 174:119-124). PME antibodies and the cDNA clone are used to determine changes in PME gene expression in developing fruits from normally ripening cv Rutgers and ripening-impaired mutants ripening inhibitor (rin), nonripening (nor), and never ripe (Nr). In Rutgers, PME mRNA is first detected in 15-day-old fruit, reaches a steady-state maximum between 30-day-old fruit and MG stage, and declines thereafter. PME activity is first detectable at day 10 and gradually increases until the turning stage. The increase in PME activity parallels an increase in PME protein; however, the levels of PME protein continue to increase beyond the turning stage while PME activity begins to decline. Patterns of PME gene expression in nor and Nr fruits are similar to the normally ripening cv Rutgers. However, the rin mutation has a considerable effect on PME gene expression in tomato fruits. PME RNA is not detectable in rin fruits older than 45 days and PME activity and protein begin showing a decline at the same time. Even though PME activity levels comparable to 25-day-old fruit were found in root tissue of normal plants, PME protein and mRNA are not detected in vegetative tissues using PME antibodies and cDNA as probes. Our data suggest that PME expression in tomato pericarp is highly regulated during fruit development and that mRNA synthesis and stability, protein stability, and delayed protein synthesis influence the level of PME activity in developing fruits.

13.
Plant Physiol ; 90(1): 17-20, 1989 May.
Article in English | MEDLINE | ID: mdl-16666730

ABSTRACT

Using tissue blotting and immunocytolocalization, we have investigated the appearance and accumulation of polygalacturonase (PG) during tomato (Lycopersicon esculentum Mill.) fruit ripening. Results show that PG first appears in the collumella region followed by sequential appearance in the exopericarp and endopericarp, respectively. Detectable levels of PG were not present in the locular material containing seeds. This result indicates that PG synthesis initiates at the central collumella region of tomato fruit during ripening.

SELECTION OF CITATIONS
SEARCH DETAIL
...