Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
ChemSusChem ; 16(12): e202300256, 2023 Jun 22.
Article in English | MEDLINE | ID: mdl-36916507

ABSTRACT

Gel polymer electrolytes composed of deep eutectic solvent acetamide4 :Zn(TFSI)2 and poly(ethylene oxide) (PEO) are prepared by using a fast, solvent-free procedure. The effect of the PEO molecular weight and its concentration on the physicochemical and electrochemical properties of the electrolytes are studied. Gels prepared with ultrahigh molecular-weight PEO present pseudo-solid behavior and ionic conductivity even higher than that of the original liquid electrolyte. A decrease in the dendritic growth in soft gels with PEO contents up to 1 wt % is demonstrated. The changes in the chemical structure of the electrolyte produced by the strong interactions between ethylene oxide units and Zn2+ have also been studied. The addition of PEO takes the electrolyte out of its original eutectic composition, producing blend crystallization. However, it is possible to retain the eutectic point of the electrolyte in a gel form if the addition of PEO is accompanied by the reduction of acetamide.


Subject(s)
Deep Eutectic Solvents , Polymers , Polymers/chemistry , Ethylene Oxide , Electrolytes/chemistry , Gels , Zinc
2.
ACS Appl Mater Interfaces ; 14(48): 53535-53545, 2022 Dec 07.
Article in English | MEDLINE | ID: mdl-36413608

ABSTRACT

Thrombus formation and infections caused by bacterial adhesion are the most common causes of failure in blood-contacting medical devices. Reducing the interaction of pathogens using repellent surfaces has proven to be a successful strategy in preventing device failure. However, designing scale-up methodologies to create large-scale repellent surfaces remains challenging. To address this need, we have created an all-polymeric lubricant-infused system using an industrially viable swelling-coagulation solvent (S-C) method. This induces hierarchically structured micro/nano features onto the surface, enabling improved lubricant infusion. Poly(3,3,3-trifluoropropylmethylsiloxane) (PTFS) was used as the lubricant of choice, a previously unexplored omniphobic nonvolatile silicone oil. This resulted in all-polymeric liquid-infused surfaces that are transparent and flexible with long-term stability. Repellent properties have been demonstrated using human whole blood and methicillin-resistant Staphylococcus aureus (MRSA) bacteria matrices, with lubricated surfaces showing 93% reduction in blood stains and 96.7% reduction in bacterial adherence. The developed material has the potential to prevent blood and pathogenic contamination for a range biomedical devices within healthcare settings.


Subject(s)
Blood Stains , Methicillin-Resistant Staphylococcus aureus , Humans , Lubricants/pharmacology
3.
ACS Appl Polym Mater ; 4(4): 2860-2870, 2022 Apr 08.
Article in English | MEDLINE | ID: mdl-35434637

ABSTRACT

Physical gels made of poly(ethylene oxide) (PEO) and deep eutectic solvents urea-Li bis(trifluoromethanesulfonyl)imide (TFSI) and ethylene glycol/LiTFSI, or pyrrolidinium ionic liquid solutions PYR13TFSI-LiTFSI and PYR14TFSI-LiTFSI, are prepared by a fast, single-step process, which involves no auxiliary solvents or intermediates and is reproducible and scalable. The properties of these gels are studied as a function of the PEO content and its molecular weight and the nature of the liquid electrolyte. The gels prepared with a low concentration (1-5 wt %) of ultrahigh molecular weight (UHMW) PEO are tough, stretchable materials which resemble soft elastomers and are also self-healing and transparent. Their rheology shows the conventional behavior of physical polymer gels, so that the higher the molecular weight of PEO, the lower the polymer concentration needed to produce the gel. However, the ion conductivities and diffusivities of the gels are striking, in many cases being equal to or significantly higher than those of pure liquid electrolytes. This ion conductivity enhancement is the highest for the lowest PEO concentration with the highest molecular weight. This unprecedented molecular weight dependence of conductivity and diffusivity is the result of two combined effects: the liquid electrolyte chemical structure modification as a consequence of the addition of PEO and the development of elastic networks, where ion mobility and rheology are uncoupled when the PEO added is of UHMW.

4.
Polymers (Basel) ; 13(13)2021 Jun 24.
Article in English | MEDLINE | ID: mdl-34202900

ABSTRACT

Gel electrolytes are prepared with Ultra High Molecular Weight (UHMW) polyethylene oxide (PEO) in a concentration ranging from 5 to 30 wt.% and Li- and Na-doped 1-butyl-1-methylpyrrolidinium bis(trifluoromethylsulfonyl)imide (PYR14-TFSI) by a simple procedure consisting of dissolving PEO by melting it directly in the liquid electrolyte while stirring the blend. This procedure is fast, reproducible and needs no auxiliary solvents, which makes it sustainable and potentially easy to scale up for mass production. The viability of the up-scaling by extrusion has been studied. Extrusion has been chosen because it is a processing method commonly employed in the plastics industry. The structure and morphology of the gel electrolytes prepared by both methods have been studied by DSC and FTIR, showing small differences among the two methods. Composite gels incorporation high concentrations of surface modified sepiolite fibers have been successfully prepared by extrusion. The rheological behavior and ionic conductivity of the gels have been characterized, and very similar performance of the extruded and manually mixed gels is detected. Ionic conductivity of all the gels, including the composites, are at or over 0.4 mS cm-1 at 25 °C, being at the same time thermoreversible and self-healing gels, tough, sticky, transparent and stretchable. This combination of properties, together with the viability of their industrial up-scaling, makes these gel electrolyte families very attractive for their application in energy storage devices.

5.
Polymers (Basel) ; 13(7)2021 Mar 27.
Article in English | MEDLINE | ID: mdl-33801632

ABSTRACT

Polymer gel electrolytes (PGEs) have been prepared with copolymers based on imidazolium ionic liquids and the deep eutectic mixture of AlCl3:urea (uralumina) as liquid electrolyte. The copolymers were synthesized by photopolymerization of vinylpirrolidone or methylmethacrylate with imidazolium bis (trifluoromethane sulfonyl) imide (TFSI) ionic liquid monomer and mixed in an increasing range of wt.% with uralumina. The rheology and electrochemical activity of PGEs were highly dependent on the molar ratio of charged groups and copolymer content. Structure of the PGEs was studied by FTIR and Raman spectroscopy and a correlation between interactions polymer/uralumina and changes in speciation of uralumina was established. Despite the low molecular weight of the copolymers, the resulting polymer electrolytes develop elastomeric character associated with the binding ionic species. Although there is room to improve the electrochemical activity, in this study these new gels provide sufficient electroactivity to make them feasible alternatives as electrolytes in secondary aluminum batteries.

6.
ChemSusChem ; 13(20): 5523-5530, 2020 Oct 21.
Article in English | MEDLINE | ID: mdl-32813325

ABSTRACT

It is possible to prepare elastic and thermoreversible gel electrolytes with significant electroactivity by dissolving minimal weight fractions of ultra-high molecular weight polyethylene oxide (UHMW PEO) in an aluminum deep eutectic solvent (DES) electrolyte composed of AlCl3 and urea at a molar ratio of 1.5 : 1 (AlCl3 /urea). The experimental vibrational spectra (FTIR and Raman) provide valuable information on the structure and composition of the gel electrolyte. However, the complexity of this system requires computational simulations to help interpretation of the experimental results. This combined approach allows us to elucidate the speciation of the DES liquid electrolyte in the gel and how it interacts with the polymer chains to give rise to an elastic network that retains the electroactivity of the liquid electrolyte to a very great extent. The observed reactions occur between the ether in the polymer and both the amine groups in urea and the aluminum species. Thus, similar elastomeric gels may likely be prepared with other aluminum liquid electrolytes, making this procedure an effective way to produce families of gel aluminum electrolytes with tunable rheology and electroactivity.

7.
Polymers (Basel) ; 12(6)2020 Jun 12.
Article in English | MEDLINE | ID: mdl-32545514

ABSTRACT

Polymer gel electrolytes have been prepared with polyethylene oxide (PEO) and the deep eutectic mixture of AlCl3: urea (uralumina), a liquid electrolyte which has proved to be an excellent medium for the electrodeposition of aluminum. The polymer gel electrolytes are prepared by mixing PEO in the liquid electrolyte at T > 65 °C, which is the melting point of PEO. This procedure takes a few minutes and requires no subsequent evaporation steps, being a solvent-free, and hence more sustainable procedure as compared to solvent-mediated ones. The absence of auxiliary solvents and evaporation steps makes their preparation highly reproducible and easy to scale up. PEO of increasing molecular weight (Mw = 1 × 105, 9 × 105, 50 × 105 and 80 × 105 g mol-1), including an ultra-high molecular weight (UHMW) polymer, has been used. Because of the strong interactions between the UHMW PEO and uralumina, self-standing gels can be produced with as little as 2.5 wt% PEO. These self-standing polymer gels maintain the ability to electrodeposit and strip aluminum, and are seen to retain a significant fraction of the current provided by the liquid electrolyte. Their gels' rheology and electrochemistry are stable for months, if kept under inert atmosphere, and their sensitivity to humidity is significantly lower than that of liquid uralumina, improving their stability in the event of accidental exposure to air, and hence, their safety. These polymer gels are tough and thermoplastic, which enable their processing and molding into different shapes, and their recyclability and reprocessability. Their thermoplasticity also allows the preparation of concentrated batches (masterbatch) for a posteriori dilution or additive addition. They are elastomeric (rubbery) and very sticky, which make them very robust, easy to manipulate and self-healing.

8.
Polymers (Basel) ; 11(3)2019 Mar 01.
Article in English | MEDLINE | ID: mdl-30960390

ABSTRACT

A solvent-free method that allows thermoplastic solid electrolytes based on poly(ethylene oxide) PEO to be obtained under controlled atmosphere conditions is presented. This method comprises two steps, the first one being the melt compounding of PEO with a filler, able to physically crosslink the polymer and its pelletizing, and the second the pellets' swelling with an electroactive liquid phase. This method is an adaptation of the step described in previous publications of the preparation of thermoplastic electrolytes by a single melt compounding. In comparison to the single step extrusion methodology, this new method permits employing electroactive species that are very sensitive to atmospheric conditions. The two-step method can also be designed to produce controlled phase-segregated morphologies in the electrolyte, namely polymer-poor and polymer-rich phases, with the aim of increasing ionic conductivity over that of homogeneous electrolytes. An evaluation of the characteristics of the electrolytes prepared by single and two-step procedures is done by comparing membranes prepared by both methods using PEO as a polymeric scaffold and a solution of the room-temperature ionic liquid 1-ethyl-3-methylimidazolium bis(trifluoromethanesulfonyl) imide (EMI TFSI) and the bis(trifluoromethanesulfonyl) imide lithium salt (Li TFSI) as liquid phase. The electrolytes prepared by both methods have been characterized by Fourier transform infrared spectroscopy and optic microscopy profilometry, differential scanning calorimetry, self-creep experiments, and dielectric spectroscopy. In this way, the phase separation, rheology, and ionic conductivity are studied and compared. It is striking how the electrolytes prepared with this new method maintain their solid-like behavior even at 90 °C. Compared to the single step method, the two-step method produces electrolytes with a phase-separated morphology, which results in higher ionic conductivity.

9.
Membranes (Basel) ; 9(4)2019 Apr 10.
Article in English | MEDLINE | ID: mdl-30974723

ABSTRACT

Solid electrolytes for Li transport have been prepared by melt-compounding in one single step. Electrolytes are composed of polyvinylidene fluoride-hexafluoropropylene (PVDF-HFP) with PYR13TFSI on its own or with varying concentration of LiTFSI. While the extrusion of PVDF-HFP with PYR13TFSI is possible up to relatively high liquid fractions, the compatibility of PVDF-HFP with LiTFSI/PYR13TFSI solutions is much lower. An organo-modified sepiolite with D-α-tocopherol polyethylene glycol 1000 succinate (TPGS-S) can be used to enhance the compatibility of these blends and allows to prepare homogeneous PYR13TFSI/LiTFSI/PVDF-HFP electrolytes with controlled microphase separations by melt-compounding. The structure and morphology of the electrolytes has been studied by FTIR, differential scanning calorimetry (DSC), SEM, and AFM. Their mechanical properties have been studied by classical strain-stress experiments. Finally, ionic conductivity has been studied in the -50 to 90 °C temperature range and in diffusivity at 25 °C by PFG-NMR. These electrolytes prove to have a microphase-separated morphology and ionic conductivity which depends mainly on their composition, and a mechanical behavior typical of common thermoplastic polymers, which makes them very easy to handle. Then, in this solvent-free and scalable fashion, it is possible to prepare electrolytes like those prepared by solvent casting, but in few minutes instead of several hours or days, without solvent evaporation steps, and with ionic conductivities, which are very similar for the same compositions, above 0.1 mS·cm-1 at 25 °C. In addition, some of the electrolytes have been prepared with high concentration of Li ion, what has allowed the anion exchange Li transport mechanism to contribute significantly to the overall Li diffusivity, making DLi become similar and even clearly greater than DTFSI.

10.
Membranes (Basel) ; 8(3)2018 Aug 02.
Article in English | MEDLINE | ID: mdl-30072669

ABSTRACT

A polymer/ionic liquid thermoplastic solid electrolyte based on poly(ethylene oxide) (PEO), modified sepiolite (TPGS-S), lithium bis(trifluoromethanesulfonyl)imide (LiTFSI), and 1-Butyl-1-methylpyrrolidinium bis(trifluoromethanesulfonyl)imide (PYR14TFSI) ionic liquid is prepared using solvent free extrusion method. Its physical-chemical, electrical, and electrochemical properties are comprehensively studied. The investigated solid electrolyte demonstrates high ionic conductivity together with excellent compatibility with lithium metal electrode. Finally, truly Li-LiFePO4 solid state coin cell with the developed thermoplastic solid electrolyte demonstrates promising electrochemical performance during cycling under 0.2 C/0.5 C protocol at 60 °C.

11.
Polymers (Basel) ; 10(2)2018 Jan 26.
Article in English | MEDLINE | ID: mdl-30966160

ABSTRACT

A series of thermoplastic polymer electrolytes have been prepared employing poly(ethylene oxide) (PEO) as a polymer matrix, bis(trifluoromethane sulfonimide) (LiTFSI), and different room-temperature ionic liquids (RTIL) with bis(fluorosulfonyl)imide (FSI) or TFSI anions. This formulation makes them safe and non-flammable. The electrolytes have been processed in the absence of solvents by melt compounding at 120 °C, using sepiolite modified with d-α-tocoferol-polyethyleneglycol 1000 succinate (TPGS-S) as a physical cross-linker of PEO. Several concentrations of RTILs, lithium salt, and TPGS-S have been tested in order to obtain the highest ionic conductivity (σ) without losing electrolytes' mechanical stability. The materials' rheology and ionic conductivity have been extensively characterized. The excellent crosslinking ability of TPGS-S makes the electrolytes behave as thermoplastic materials, even those with the highest liquid concentration. The electrolytes with the highest concentrations of FSI anion present a σ over 10-3 S·cm-1 at 25 °C and close to 10-2 S·cm-1 at 70 °C, and notably behave as solids at temperatures up to 90 °C despite over 65 wt % of their formulation being liquid. The electrolytes thus obtained are safe solid thermoplastics prepared by industrially scalable procedures and are suitable for energy storage devices, proving the adequacy of polymer-based materials as solid electrolytes for batteries or supercapacitors.

12.
ACS Omega ; 2(12): 8928-8939, 2017 Dec 31.
Article in English | MEDLINE | ID: mdl-31457420

ABSTRACT

A family of hybrid organoinorganic silica-based particles with varied chemical natures and morphologies has been synthesized to test their ability to develop coatings with underwater hydrophobicity. The particles were characterized by elemental microanalysis, scanning electron microscopy, and dynamic light scattering to evaluate the organic content, observe the morphology, and estimate the aggregate size, respectively. These morphologies were transferred into surface topographies by spraycoating dispersions made from the particles onto glass supports, resulting in coatings with an ample range of profiles and roughness but all of them being superhydrophobic. Atomic force microscopy and optical profilometry were used to map the coating surfaces and analyze the topography. Then, underwater hydrophobicity endurance was tested by immersion under a 2 cm 20 °C water column perpendicular to circular glass supports coated with the particles. The so-called mirror effect derived from the occurrence of the primary plastron (continuous air layer occluded between the surface and the water) was observed on the surface of all of the coatings tested. Apart from the dependency of plastrons on the water temperature and substrate shape, the plastron quality and lifetime is notably different depending on the particle morphology and thus on the coating topography. These experiments have demonstrated that the most persistent mirror effects, and therefore underwater superhydrophobicity, were produced on coatings that exhibited the smoothest topographies at the micrometric scale. In addition, these particle-only coatings can be made mechanically stable and robust by blending with a polymer matrix.

13.
Langmuir ; 31(12): 3718-26, 2015 Mar 31.
Article in English | MEDLINE | ID: mdl-25747277

ABSTRACT

Neat poly(9,9-dioctyl-9H-fluorene) (PFO) and composites of PFO and a modified organonanosilica P(7) at weight ratios 90/10, 70/30, and 50/50 have been employed to prepare fluorescent and superhydrophobic coatings by spraying onto three different substrates: glass, Whatman paper, and a filtration membrane of mixed cellulose esters. The water repellency of the coatings and their photophysical properties are therein studied. It is found that, irrespective of the substrate and the composite composition, all coatings remain fluorescent. In some of the coatings prepared, confined morphologies are created, which fluoresce with a wavelength distribution resembling that of an ordered planar ß-phase. Among the coatings prepared in this work, those with a ratio PFO/P(7) of 50/50 are the ones with the strongest chain confinement and the highest surface roughness, being highly emissive at the ß-phase wavelengths and also superhydrophobic. Depending on the substrate these materials are also tough and flexible (cellulose based substrates) or display a remarkable light transmittance (glass). A final merit of these multifunctional materials is the simplicity of the preparation procedure, adequate for large surfaces and industrial applications.

14.
J Phys Chem B ; 119(7): 3097-103, 2015 Feb 19.
Article in English | MEDLINE | ID: mdl-25603311

ABSTRACT

In the study of the electric properties of electrolytes, the determination of the diffusion coefficients of the species that intervene in the charge transport process is of great importance, particularly that of the free ions (D(+) and D(-)), the only species that contribute to the conductivity. In this work we propose a model that allows, with reasonable assumptions, determination of D(+) and D(-), and the degree of dissociation of the salt, α, at different concentrations, using the diffusion coefficients experimentally obtained with NMR. Also, it is shown that the NMR data suffice to estimate the conductivity of the electrolytes. The model was checked by means of experimental results of conductivity and NMR diffusion coefficients obtained with solutions of lithium triflate in ethylene and propylene carbonates, as well as with other results taken from the literature.

15.
ACS Appl Mater Interfaces ; 6(21): 18998-9010, 2014 Nov 12.
Article in English | MEDLINE | ID: mdl-25275966

ABSTRACT

Nonfluorinated hydrophobic surfaces are of interest for reduced cost, toxicity, and environmental problems. Searching for such surfaces together with versatile processing, A200 silica nanoparticles are modified with an oligodimethylsiloxane and used by themselves or with a polymer matrix. The goal of the surface modification is controlled aggregate size and stable suspensions. Characterization is done by NMR, microanalysis, nitrogen adsorption, and dynamic light scattering. The feasibility of the concept is then demonstrated. The silica aggregates are sprayed in a scalable process to form ultrahydrophobic and imperceptible coatings with surface topographies of controlled nanoscale roughness onto different supports, including nanofibrillated cellulose. To improve adhesion and wear properties, the organosilica was mixed with polymers. The resulting composite coatings are characterized by FE-SEM, AFM, and contact angle measurements. Depending on the nature of the polymer, different functionalities can be developed. Poly(methyl methacrylate) leads to almost superhydrophobic and highly transparent coatings. Composites based on commercial acrylic car paint show "pearl-bouncing" droplet behavior. A light-emitting polyfluorene is synthesized to prepare luminescent and water repellent coatings on different supports. The interactions between polymers and the organosilica influence coating roughness and are critical for wetting behavior. In summary, the feasibility of a facile, rapid, and fluorine-free hydrophobization concept was successfully demonstrated in multipurpose antiwetting applications.

16.
Langmuir ; 27(7): 3952-9, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21355565

ABSTRACT

Surface modification reactions on needle-like sepiolite using alkyl and functional silanes have been carried out in the form of aqueous gels. In contrast with modifications in organic solvents, reactions in water make it possible to modify the surface of almost-individual sepiolite fibers and produce either a continuous coating or a nanotexturization of the sepiolite fiber surface, depending on the reaction conditions. This clean procedure substitutes advantageously organic solvent surface modifications and allows the tuning of surface properties such as specific surface area, wetting behavior, and chemical functionalization. A consequence of such tuning is, for example, the excellent dispersion of modified sepiolite nanofibers in a great variety of polymers by routine compounding and processing techniques.

17.
Langmuir ; 26(8): 5499-506, 2010 Apr 20.
Article in English | MEDLINE | ID: mdl-20085329

ABSTRACT

The scope of this work is the comparative analysis in terms of grafting rate, structure of the grafted layer, and wetting behavior of three series of silica nanoparticles modified with alkyltrimethoxysilanes by using conventional heating with and without acid catalysis, and microwave irradiation. A comprehensive characterization of the grafted layer by means of Fourier transform infrared (FTIR), microanalysis, and solid state NMR techniques has shown that microwave irradiation provokes a pronounced increase in the loading rate compared to conventional heating. This microwave effect is outstanding in the case of the reactions with methyltrimethoxysilane, because of the acceleration of the condensation rate. Moreover, solid state NMR spectra ((29)Si and (13)C) strongly suggest structural differences in the grafted layer obtained by the two heating sources. The wetting behavior of the modified nanoparticles was studied, concluding that these changes in the structure of the grafted layer induced by the synthetic procedure do not determine the values of the dynamic water contact angles.

18.
Sci Technol Adv Mater ; 9(2): 024404, 2008 Apr.
Article in English | MEDLINE | ID: mdl-27877971

ABSTRACT

In the present work we aim to clarify the role of the microstructure and the crystalline distribution from the thermo-oxidation of solid isotactic PP (iPP) and ethylene-propylene (EP) copolymers. The effects of the content and quality of the isotacticity interruptions, together with the associated average isotactic length, on the induction time (ti) as well as on the activation energy (Eact) of the thermo-oxidation are analysed. Both parameters have been found to change markedly at an average isotactic length (n1) of 30 propylene units. While ti reaches a minimum when n1 is approximately 30 units, Eact increases quasi-exponentially as the number of units decreases from 30. This variation can be explained in terms of changes induced in the crystalline interphase, i.e. local molecular dynamics, which are closely linked to the initiation of the thermo-oxidation of isotactic PP-based polyolefins.

19.
J Am Chem Soc ; 129(16): 5052-60, 2007 Apr 25.
Article in English | MEDLINE | ID: mdl-17397151

ABSTRACT

The modification of Aerosil 200 has been carried out using methoxysilanes in toluene reflux, with p-toluenesulfonic acid as the catalyst. Both trimethoxyalkyl silanes (methyl, ethyl, propyl, butyl, hexyl, octyl, and octadecyl) and trialkylmethoxy silanes (trimethyl and dimethyloctyl) have been used. The surface has been studied by 29Si NMR, 13C NMR, elemental analysis, thermogravimetry, water contact angle, and BET analysis. When incorporating trimethoxysilanes, a plateau of modification was achieved after 1 h of reflux, while when using trialkylmethoxy silanes, a longer time of about 7 h was required. The average number of molecules incorporated in both cases has been well above those reported by other authors in similar reactions and in much shorter times. Depending on the modification agent and on the experimental conditions, the resulting organosilicas are in seven cases superhydrophobic, in three cases hydrophobic, and in two cases hydrophilic. Two structural origins for superhydrophobicity have been identified in these samples: almost complete disappearance of water accessible surface silanols (smallest methoxysilanes) and shielding of would-be water accessible surface silanols by long aliphatic tails. These features can be very precisely controlled.

20.
Biomaterials ; 26(18): 3783-91, 2005 Jun.
Article in English | MEDLINE | ID: mdl-15626426

ABSTRACT

The oxygen permeability and diffusion coefficients of hydrogel membranes prepared with copolymers of 2-ethoxyethyl methacrylate (EEMA)/2,3-dihydroxypropylmethacrylate (MAG) with mole fraction of the second monomer in the range between 0 and 0.75 are described. Values of the permeability and diffusion coefficients of oxygen are determined by using electrochemical procedures involving the measurement of the steady-state current in membranes prepared by radical polymerization of the monomers. The results obtained for the transport properties were analyzed taking into account the fractional free volumes, the cohesive energy densities and the glass transition temperatures of the hydrogels.


Subject(s)
Biocompatible Materials/chemistry , Electrochemistry/methods , Hydrogels/chemistry , Methacrylates/chemistry , Methylmethacrylates/chemistry , Oxygen/chemistry , Biocompatible Materials/analysis , Diffusion , Hydrogels/analysis , Materials Testing/methods , Methacrylates/analysis , Methylmethacrylates/analysis , Oxygen/analysis , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...