Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Ultramicroscopy ; 228: 113338, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34218137

ABSTRACT

A convolutional neural network is used to align an orbital angular momentum sorter in a transmission electron microscope. The method is demonstrated using simulations and experiments. As a result of its accuracy and speed, it offers the possibility of real-time tuning of other electron optical devices and electron beam shaping configurations.

2.
Ultramicroscopy ; 118: 35-43, 2012 Jul.
Article in English | MEDLINE | ID: mdl-22728403

ABSTRACT

We apply monochromated illumination to improve the information transfer in focal series reconstruction to 0.5 Å at 300 kV. Contrary to single images, which can be taken arbitrarily close to Gaussian focus in a C(S)-corrected microscope, images in a focal series are taken at a certain defocus. This defocus poses limits on the spatial coherence of the illumination, and through this, limits on the brightness of the monochromated illumination. We derive an estimate for the minimum spatial coherence and the minimal brightness needed for a certain resolution at a certain defocus and apply this estimate to our focal series experiments. We find that the 0.5 Å information transfer would have been difficult and probably impossible to obtain without the exceptionally high brightness of the monochromated illumination.


Subject(s)
Electrons , Image Processing, Computer-Assisted/methods , Algorithms , Chromosome Aberrations , Equipment Design/instrumentation , Equipment Design/methods , Fourier Analysis , Lighting , Microscopy, Electron/methods , Reproducibility of Results
3.
Ultramicroscopy ; 114: 72-81, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22356791

ABSTRACT

Chromatic aberration limits the resolution in spherical-aberration corrected Transmission Electron Microscopy to approximately 0.7Å at 300 kV. The energy spread in the beam is the main contribution to the chromatic aberration. This spread can be reduced with a monochromator. Another limitation to the resolution in TEM can be the finite brightness of the source and the consequent partial spatial coherence of the illumination. This limitation becomes important when spherical aberration and/or defocus are present such as in uncorrected TEM or in focal-series reconstruction in TEM. We used a monochromator optimized for minimum brightness loss and a prototype 'high-brightness' gun, and obtained brightness after monochromation comparable to that of the standard Schottky FEG before monochromation. The images were acquired on the prototype TEAM 0.5 microscope, which was developed on a Titan platform by increasing its electrical and mechanical stability.

4.
Ultramicroscopy ; 111(8): 1437-46, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21864787

ABSTRACT

Two new methods for the measurement of transverse spatial coherence in a transmission electron microscope (TEM) are developed and applied to measure the spatial coherence in a field emission gun TEM. Measurements are made under different illumination and operating conditions, illustrating the effect of these conditions on the spatial coherence. The relative merits and limitations of these methods are discussed and compared, together with the previously described "Ronchigram" method.

5.
Microsc Microanal ; 14(5): 469-77, 2008 Oct.
Article in English | MEDLINE | ID: mdl-18793491

ABSTRACT

The ability of electron microscopes to analyze all the atoms in individual nanostructures is limited by lens aberrations. However, recent advances in aberration-correcting electron optics have led to greatly enhanced instrument performance and new techniques of electron microscopy. The development of an ultrastable electron microscope with aberration-correcting optics and a monochromated high-brightness source has significantly improved instrument resolution and contrast. In the present work, we report information transfer beyond 50 pm and show images of single gold atoms with a signal-to-noise ratio as large as 10. The instrument's new capabilities were exploited to detect a buried Sigma3 {112} grain boundary and observe the dynamic arrangements of single atoms and atom pairs with sub-angstrom resolution. These results mark an important step toward meeting the challenge of determining the three-dimensional atomic-scale structure of nanomaterials.

6.
Ultramicroscopy ; 102(3): 209-14, 2005 Feb.
Article in English | MEDLINE | ID: mdl-15639351

ABSTRACT

Since the invention of transmission electron microscopy (TEM) in 1932 (Z. Physik 78 (1932) 318) engineering improvements have advanced system resolutions to levels that are now limited only by the two fundamental aberrations of electron lenses; spherical and chromatic aberration (Z. Phys. 101 (1936) 593). Since both aberrations scale with the dimensions of the lens, research resolution requirements are pushing the designs to lenses with only a few mm space in the pole-piece gap for the specimen. This is in conflict with the demand for more and more space at the specimen, necessary in order to enable novel techniques in TEM, such as He-cooled cryo electron microscopy, 3D-reconstruction through tomography (Science 302 (2003) 1396) TEM in gaseous environments, or in situ experiments (Nature 427 (2004) 426). All these techniques will only be able to achieve Angstrom resolution when the aberration barriers have been overcome. The spherical aberration barrier has recently been broken by introducing spherical aberration correctors (Nature 392 (1998) 392, 418 (2002) 617), but the correction of the remaining chromatic aberrations have proved to be too difficult for the present state of technology (Optik 57 (1980) 73). Here we present an alternative and successful method to eliminate the chromatic blur, which consists of monochromating the TEM beam (Inst. Phys. Conf. Ser. 161 (1999) 191). We show directly interpretable resolutions well below 1A for the first time, which is significantly better than any TEM operating at 200 KV has reached before.


Subject(s)
Lenses , Microscopy, Electron, Transmission/instrumentation , Optics and Photonics , Microscopy, Electron, Transmission/methods
7.
Micron ; 34(3-5): 235-8, 2003.
Article in English | MEDLINE | ID: mdl-12895495

ABSTRACT

Using single crystal V2O5 as a sample, we tested the performance of the new aberration corrected GATAN spectrometer on a monochromatised 200 kV FEG FEI (S)TEM. The obtained V L and O K ELNES were compared with that obtained in a common GATAN GIF and that in the new spectrometer, without monochromatised beam. The performance of the new instrumentation is impressive: recorded with an energy-resolution of 0.22 eV, the V L(3) edge reveals all the features due to the bulk electronic structure, that are also revealed in near-edge X-ray absorption fine structure (NEXAFS) with a much higher energy-resolution (0.08 eV). All features of the ELNES and NEXAFS are in line with a theoretical spectrum derived from band-structure calculations.

8.
Ultramicroscopy ; 96(3-4): 469-80, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12871809

ABSTRACT

Near-edge fine structures of the metal L(2,3) and O K-edges in transition metal-oxides have been studied with a transmission electron microscope equipped with a monochromator and a high-resolution imaging filter. This system enables the recording of EELS spectra with an energy resolution of 0.1eV thus providing new near-edge fine structure details which could not be observed previously by EELS in conventional TEM instruments. EELS-spectra from well-defined oxides like titanium oxide (TiO(2)), vanadium oxide (V(2)O(5)), chromium oxide (Cr(2)O(3)), iron oxide (Fe(2)O(3)), cobalt oxide (CoO) and nickel oxide (NiO) have been measured with the new system. These spectra are compared with EELS data obtained from a conventional microscope and the main spectral features are interpreted. Additionally, the use of monochromised TEMs is discussed in view of the natural line widths of K and L(2,3) edges.

SELECTION OF CITATIONS
SEARCH DETAIL
...