Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 262: 229-234, 2018 Aug.
Article in English | MEDLINE | ID: mdl-29709841

ABSTRACT

This study investigated the acetate production from gas mixture of hydrogen (H2) and carbon dioxide (CO2) in the ratio of 7:3 using two acetogens: Acetobacterium woodii and Clostridium ljungdahlii. Batch result shows A. woodii performed two-phase degradation with the presence of glucose that lactate was produced from glucose and was reutilized for the production of butyrate and few acetate, while only acetate was detected when providing gas mixture. C. ljungdahlii produced butyrate and ethanol along with acetate when glucose was introduced, while only ethanol and acetate were found by feeding gas mixture. The acetate-to-ethanol (A/E) ratio can be enhanced by cell immobilization, while GAC immobilization produced only acetate and the production rate reached 0.072 mmol/d under fed-batch operation. Acetate production rate increased from 18 to 28 mmol/L/d with GAC immobilization when gas flowrate increased from 100 to 300 mL/min in anaerobic fluidized membrane bioreactor (AFMBR), and a highest A/E ratio of 30 implies the possible application of acetate recovery from H2 and CO2.


Subject(s)
Acetobacterium , Carbon Dioxide/analysis , Clostridium , Acetates/chemistry , Acetic Acid , Hydrogen
2.
Bioresour Technol ; 184: 379-385, 2015 May.
Article in English | MEDLINE | ID: mdl-25499745

ABSTRACT

This study conducted batch experiments to evaluate the potential of butanol production from microalgae biodiesel residues by Clostridium acetobutylicum. The results indicated that with 90 g/L of glucose as the sole substrate the highest butanol yield of 0.2 g/g-glucose was found, but the addition of butyrate significantly enhanced the butanol yield. The highest butanol yield of 0.4 g/g-glucose was found with 60 g/L of glucose and 18 g/L of butyrate. Using microalgae biodiesel residues as substrate, C. acetobutylicum produced 3.86 g/L of butanol and achieved butanol yield of 0.13 g/g-carbohydrate via ABE fermentation, but the results indicated that approximately one third of carbohydrate was not utilized by C. acetobutylicum. Biological butanol production from microalgae biodiesel residues can be possible, but further research on fermentation strategies are required to improve production yield.


Subject(s)
Biofuels , Butanols/metabolism , Clostridium acetobutylicum/metabolism , Microalgae/metabolism , Butyrates/pharmacology , Clostridium acetobutylicum/drug effects , Fermentation/drug effects , Glucose/pharmacology , Hydrolysis , Microalgae/drug effects , Waste Products
SELECTION OF CITATIONS
SEARCH DETAIL
...