Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 168
Filter
1.
Article in English | MEDLINE | ID: mdl-39253804

ABSTRACT

BACKGROUND: This study determines the clinical and paraclinical characteristics of children with Toxocara canis infection and serum eosinophil cut-off values for predicting toxocariasis in the group displaying symptoms of itching, urticaria and erythema. METHODS: A cross-sectional study was conducted during March and April 2023 with a sample size of 986 children aged 3-15 y. RESULTS: In total, 140 (14.2%) of the 986 participants had anti-T canis antibodies. The most frequently experienced symptoms in this group were itching (10.1%), abdominal pain (8.2%) and urticaria (3.3%). The rate of IgE increased (37%), and the rates of mild and high eosinophilia were 38% and 2.2%, respectively. There were significant differences in IgE concentration and eosinophil count, and for both IgE concentration and eosinophil count between the two groups with and without toxocariasis. The optimal threshold for eosinophil to predict toxocariasis was 0.38 K/µL, with itching, urticaria and erythema resulting in a sensitivity of 61.5%, a specificity of 82.1% and a receiver operating characteristic curve (area under the curve) of 0.71. CONCLUSIONS: This study confirmed a positive association between IgE concentration, eosinophil count and positive serology for T. canis. A general blood count, including eosinophils, is a simple test that can be performed in hospitals. Clinicians should target and screen for T.oxocara canis infection when children display clinical symptoms of itching, urticaria, erythema and eosinophilia. CLINICAL TRIAL REGISTRATION NUMBER: NCT05208333.

2.
J Sleep Res ; : e14370, 2024 Sep 29.
Article in English | MEDLINE | ID: mdl-39344142

ABSTRACT

This study aimed to examine the improvement in performance and functional magnetic resonance imaging correlates of motor learning after a daytime nap versus a period of resting wakefulness among individuals with traumatic brain injury. A sample of 32 individuals with traumatic brain injury was randomly assigned to a Sleep (N = 17) or Wake (N = 15) group after a period of training on a motor sequential learning task. A 45-min nap opportunity was provided for the Sleep group, while the Wake group watched a documentary for 45 min. Performance at the end of training was compared with their performance after the nap or wake intervention. Before and after the intervention, the motor sequential learning task was completed in the magnetic resonance imaging scanner to examine the relationship between change in performance and neural activation. Participants in the Sleep group showed significant gains from the end of training to after the intervention, whereas the Wake group did not. The functional magnetic resonance imaging results showed that relative to the Wake group, the Sleep group showed significantly decreased activation post-intervention in the anterior cingulate/paracingulate, cerebellum, cuneus/precuneus, and inferior parietal lobule including angular and supramarginal gyri. Importantly, across both groups, increased task performance at post-intervention was associated with decreased activation in the anterior cingulate/paracingulate and cerebellum. This study demonstrated the enhancing effect of a nap on motor learning performance in a sample of individuals with traumatic brain injury, with patterns of neural activation suggesting that the sequence was more automatized in the Sleep group. Strategic placement of a nap after an intense period of motor learning in the medical rehabilitation setting may have important implications for maximizing recovery after traumatic brain injury.

3.
Arch Microbiol ; 206(10): 396, 2024 Sep 09.
Article in English | MEDLINE | ID: mdl-39249533

ABSTRACT

Bacteria threaten human and animal health, and standard antibiotics no longer effective. Antibiotic-resistant microorganisms can make infection treatment challenging and perhaps fail. Investigating the attributes of cyclotide, a peptide with promising antibacterial properties that holds great potential in the field of antibiotic research. The structure of these cyclic peptides involves six conserved cysteine residues that form three disulfide bonds, resulting in a cyclic cystine knot (CCK). This feature guarantees their durability when exposed to changes in temperature, chemicals, and enzymatic degradation. The two cyclotides, cycloviolacin O17 and mra30, were obtained from Viola dalatensis Gadnep through a series of techniques including the use of a 50% acetonitrile/49% miliQ water/1% formic acid solution for extraction, ammonium salt precipitation, RP-HPLC purification and sequence identification by LC-MS/MS. These cyclotides exhibit antibacterial effects on specific strains of bacteria like Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa at a concentration of 0.2 mg/mL, leading to inhibition zones ranging from 10 to 14 mm. In addition, the disulfide bonds play a crucial role in the antibacterial function of cyclotides. Disrupting the disulfide bonds through ankylation reaction results in the loss of antibacterial properties in the cyclotides (cyO17 and mra30). The minimum inhibitory concentration (MIC) values of mra30 and cyO17 are significantly low, ranging from 0.1 to 0.6 µM. These values are approximately three times lower than the MIC values observed in salt precipitation samples.


Subject(s)
Anti-Bacterial Agents , Cyclotides , Microbial Sensitivity Tests , Viola , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/isolation & purification , Cyclotides/chemistry , Cyclotides/pharmacology , Cyclotides/isolation & purification , Viola/chemistry , Staphylococcus aureus/drug effects , Pseudomonas aeruginosa/drug effects , Tandem Mass Spectrometry , Bacillus subtilis/drug effects , Amino Acid Sequence , Bacteria/drug effects
4.
Protein J ; 43(5): 1025-1034, 2024 Oct.
Article in English | MEDLINE | ID: mdl-39190120

ABSTRACT

The linear undecapeptide BP52 was previously reported to have antibacterial activity against phytopathogenic bacteria species. Due to the structural similarities to naturally occurring cationic helical antimicrobial peptides, it was speculated that this peptide could potentially target microbial pathogens and cancer cells found in mammals. Consequently, this study aims to further investigate the structural and biological properties of this peptide. Our findings indicate that BP52 exhibits strong antimicrobial and anticancer activity while displaying relatively low levels of hemolytic activity. Hence, this study suggests that BP52 could be a potential lead compound for drug discovery against infectious diseases and cancer. Besides, new insights into the relationships between the structure and the multifunctional properties of antimicrobial peptides were also explored.


Subject(s)
Antineoplastic Agents , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antimicrobial Cationic Peptides/pharmacology , Antimicrobial Cationic Peptides/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Microbial Sensitivity Tests , Hemolysis/drug effects , Antimicrobial Peptides/chemistry , Antimicrobial Peptides/pharmacology , Cell Line, Tumor
5.
Article in English | MEDLINE | ID: mdl-39046329

ABSTRACT

OBJECTIVE: Feedback facilitates learning by guiding and modifying behaviors through an action-outcome contingency. As the majority of existing studies have focused on the immediate presentation of feedback, the impact of delayed feedback on learning is understudied. Prior work demonstrated that learning from immediate and delayed feedback employed distinct brain regions in healthy individuals, and compared to healthy individuals, individuals with traumatic brain injury (TBI) are impaired in learning from immediate feedback. The goal of the current investigation was to assess the effects of delayed vs immediate feedback on learning in individuals with TBI and examine brain networks associated with delayed and immediate feedback processing. SETTING: Nonprofit research organization. PARTICIPANTS: Twenty-eight individuals with moderate-to-severe TBI. DESIGN: Participants completed a paired-associate word learning task while undergoing magnetic resonance imaging. During the task, feedback was presented either immediately, after a delay, or not at all (control condition). MAIN MEASURES: Learning performance accuracy, confidence ratings, post-task questionnaire, and blood oxygen level-dependent signal. RESULTS: Behavioral data showed that delayed feedback resulted in better learning performance than immediate feedback and no feedback. In addition, participants reported higher confidence in their performance during delayed feedback trials. During delayed vs immediate feedback processing, greater activation was observed in the superior parietal and angular gyrus. Activation in these areas has been previously associated with successful retrieval and greater memory confidence. CONCLUSION: The observed results might be explained by delayed feedback processing circumventing the striatal dopaminergic regions responsible for learning from immediate feedback that are impaired in TBI. In addition, delayed feedback evokes less of an affective reaction than immediate feedback, which likely benefited memory performance. Indeed, compared to delayed feedback, positive or negative immediate feedback was more likely to be rated as rewarding or punishing, respectively. The findings have significant implications for TBI rehabilitation and suggest that delaying feedback during rehabilitation might recruit brain regions that lead to better functional outcomes.

6.
Contemp Clin Trials ; 144: 107630, 2024 Sep.
Article in English | MEDLINE | ID: mdl-39002892

ABSTRACT

BACKGROUND: This paper describes the protocol for a Phase I/II, parallel-group, single-blind randomized controlled trial (RCT). The RCT investigates the combined effects of 12-weeks of aerobic exercise training (AET) integrated with virtual reality (VR) and cognitive rehabilitation (CR) on new learning and memory in 78 persons with multiple sclerosis (MS) who have mobility disability and objective impairments in learning and memory. METHODS: Participants will undergo baseline assessments consisting of neuropsychological testing, neuroimaging, self-report questionnaires, and cardiorespiratory fitness. Participants will then be randomized into one of two conditions using concealed allocation: aerobic cycling exercise that incorporates VR combined with CR or stretching and toning (i.e., active control; S/T) combined with CR. Participants will be masked regarding the intent of the conditions. After 7-weeks of exercise alone, the 5-week Kessler Foundation modified Story Memory Technique (KF-mSMT®) will be integrated into the training. After the 12-week training period, participants will complete the same measures as at baseline administered by treatment-blinded assessors. Primary study outcomes include new learning and memory (NLM) measured by a small battery of neuropsychological assessments that assess list learning (California Verbal Learning Test-II), prose memory (Memory Assessment Scale), visuospatial memory (Brief Visuospatial Memory Test-Revised), and everyday memory (Ecological Memory Simulations). Secondary study outcomes include neuroimaging outcomes of hippocampal structure, function, and connectivity. CONCLUSION: If successful, this trial will provide the first Class I evidence supporting the unique combination of aerobic cycling exercise with VR and CR for treating MS-related learning and memory impairments in persons with mobility disability.


Subject(s)
Multiple Sclerosis , Adult , Female , Humans , Male , Middle Aged , Cardiorespiratory Fitness/physiology , Cognitive Training , Exercise/physiology , Exercise Therapy/methods , Learning , Memory , Mobility Limitation , Multiple Sclerosis/rehabilitation , Multiple Sclerosis/psychology , Multiple Sclerosis/complications , Neuropsychological Tests , Single-Blind Method , Virtual Reality Exposure Therapy/methods , Randomized Controlled Trials as Topic , Clinical Trials, Phase I as Topic , Clinical Trials, Phase II as Topic
7.
Sci Rep ; 14(1): 12983, 2024 06 06.
Article in English | MEDLINE | ID: mdl-38839808

ABSTRACT

Some of the most metabolically diverse species of bacteria (e.g., Actinobacteria) have higher GC content in their DNA, differ substantially in codon usage, and have distinct protein folding environments compared to tractable expression hosts like Escherichia coli. Consequentially, expressing biosynthetic gene clusters (BGCs) from these bacteria in E. coli often results in a myriad of unpredictable issues with regard to protein expression and folding, delaying the biochemical characterization of new natural products. Current strategies to achieve soluble, active expression of these enzymes in tractable hosts can be a lengthy trial-and-error process. Cell-free expression (CFE) has emerged as a valuable expression platform as a testbed for rapid prototyping expression parameters. Here, we use a type III polyketide synthase from Streptomyces griseus, RppA, which catalyzes the formation of the red pigment flaviolin, as a reporter to investigate BGC refactoring techniques. We applied a library of constructs with different combinations of promoters and rppA coding sequences to investigate the synergies between promoter and codon usage. Subsequently, we assess the utility of cell-free systems for prototyping these refactoring tactics prior to their implementation in cells. Overall, codon harmonization improves natural product synthesis more than traditional codon optimization across cell-free and cellular environments. More importantly, the choice of coding sequences and promoters impact protein expression synergistically, which should be considered for future efforts to use CFE for high-yield protein expression. The promoter strategy when applied to RppA was not completely correlated with that observed with GFP, indicating that different promoter strategies should be applied for different proteins. In vivo experiments suggest that there is correlation, but not complete alignment between expressing in cell free and in vivo. Refactoring promoters and/or coding sequences via CFE can be a valuable strategy to rapidly screen for catalytically functional production of enzymes from BCGs, which advances CFE as a tool for natural product research.


Subject(s)
Cell-Free System , Promoter Regions, Genetic , Streptomyces griseus/enzymology , Streptomyces griseus/genetics , Streptomyces griseus/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Multigene Family , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Polyketide Synthases/genetics , Polyketide Synthases/metabolism , Codon/genetics , Acyltransferases
8.
Nat Prod Res ; : 1-10, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710024

ABSTRACT

It is widely recognised that orange peels contain a considerable quantity of phenolics, primarily in the form of glycosides. The process of fermentation holds potential as a viable method for extracting phenolic compounds and facilitating their biotransformation into novel metabolites. The aim of this study was to assess the enhanced release of phenolic compounds through the process of solid-state fermentation of orange peels using microorganisms. Following a 6-day incubation period, the methanol extract obtained from the sample fermented with starter Banh men exhibited the highest concentration of total phenolic compounds (17.57 ± 0.34 mg GAE/g DW) and demonstrated the most significant DPPH (2,2-diphenyl-1-picrylhydrazyl) radical scavenging activity (55.03%). The Reverse Phase High Performance Liquid Chromatography (RP-HPLC) analysis revealed that the predominant phenolic compounds in all fermented samples were flavonoid aglycones, specifically naringenin, hesperetin, and nobiletin. Conversely, in the unfermented orange peels, the major compound observed was the glycoside derivative hesperidin.

9.
Physiol Res ; 73(2): 205-216, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38710050

ABSTRACT

ADHD is a common chronic neurodevelopmental disorder and is characterized by persistent inattention, hyperactivity, impulsivity and are often accompanied by learning and memory impairment. Great evidence has shown that learning and memory impairment of ADHD plays an important role in its executive function deficits, which seriously affects the development of academic, cognitive and daily social skills and will cause a serious burden on families and society. With the increasing attention paid to learning and memory impairment in ADHD, relevant research is gradually increasing. In this article, we will present the current research results of learning and memory impairment in ADHD from the following aspects. Firstly, the animal models of ADHD, which display the core symptoms of ADHD as well as with learning and memory impairment. Secondly, the molecular mechanism of has explored, including some neurotransmitters, receptors, RNAs, etc. Thirdly, the susceptibility gene of ADHD related to the learning and impairment in order to have a more comprehensive understanding of the pathogenesis. Key words: Learning and memory, ADHD, Review.


Subject(s)
Attention Deficit Disorder with Hyperactivity , Memory Disorders , Attention Deficit Disorder with Hyperactivity/psychology , Attention Deficit Disorder with Hyperactivity/genetics , Humans , Animals , Memory Disorders/psychology , Memory Disorders/etiology , Learning , Disease Models, Animal , Learning Disabilities/psychology , Learning Disabilities/etiology , Memory
10.
ACS Appl Bio Mater ; 7(6): 3796-3809, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38776418

ABSTRACT

Drug resistance and off-target toxicity are two of the greatest challenges to chemotherapeutic melanoma treatments. Nitric oxide (NO) represents an attractive alternative to conventional therapeutics due to its numerous anticancer properties and low probability of engendering resistance. As NO is highly reactive, macromolecular NO donors are needed for the controlled and targeted delivery of NO for therapeutic applications. Herein, mesoporous silica nanoparticles (MSNs) coated with hyaluronic acid (HA) were developed as a NO delivery system to facilitate controlled delivery to cancer cells through both passive and active targeting via the enhanced permeation and retention effect and directed binding of HA with CD44 receptors, respectively. The aminosilane modification, HA concentration, and HA molecular weight were systematically evaluated to facilitate the MSN coating and NO loading. The hydrodynamic diameter and dispersity of the nanoparticles increased after HA coating due to the hydrophilic nature of HA, with greater increases observed at higher HA molecular weight. Lower starting concentrations of HA and aminosilanes with longer alkyl chains favored more efficient HA coating. Faster NO-release kinetics and lower NO payloads were observed for the HA-coated MSNs relative to uncoated MSNs. However, the localized delivery of NO to cancer cells through the active targeting conferred by HA increased levels of oxidative stress and induced mitochondria-mediated apoptosis in melanoma cells. Cytotoxicity was also evaluated against human dermal fibroblasts, with the use of 6 kDa HA-coated MSNs resulting in the greatest therapeutic indices. Enhanced internalization of HA-coated nanoparticles into melanoma cells versus uncoated nanoparticles was visualized with confocal microscopy and quantified by fluorescence spectroscopy. In total, HA-coated MSNs represent a promising NO delivery system for potential use as a chemotherapeutic for skin melanomas.


Subject(s)
Hyaluronic Acid , Materials Testing , Nanoparticles , Nitric Oxide , Particle Size , Silicon Dioxide , Hyaluronic Acid/chemistry , Humans , Silicon Dioxide/chemistry , Nanoparticles/chemistry , Nitric Oxide/chemistry , Nitric Oxide/metabolism , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Biocompatible Materials/chemistry , Biocompatible Materials/pharmacology , Cell Survival/drug effects , Drug Screening Assays, Antitumor , Drug Delivery Systems , Cell Line, Tumor , Cell Proliferation/drug effects
11.
Protein J ; 43(2): 159-170, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38485875

ABSTRACT

The immune system maintains constant surveillance to prevent the infiltration of both endogenous and exogenous threats into host organisms. The process is regulated by effector immune cells that combat external pathogens and regulatory immune cells that inhibit excessive internal body inflammation, ultimately establishing a state of homeostasis within the body. Disruption to this process could lead to autoimmunity, which is often associated with the malfunction of both T cells and B cells with T cells playing a more major role. A number of therapeutic mediators for autoimmune diseases are available, from conventional disease-modifying drugs to biologic agents and small molecule inhibitors. Recently, ribosomally synthesized peptides, specifically cyclotides from plants are currently attracting more attention as potential autoimmune disease therapeutics due to their decreased toxicity compared to small molecules inhibitors as well as their remarkable stability against a number of factors. This review provides a concise overview of various cyclotides exhibiting immunomodulatory properties and their potential as therapeutic interventions for autoimmune diseases.


Subject(s)
Autoimmune Diseases , Cyclotides , Humans , Autoimmune Diseases/drug therapy , Autoimmune Diseases/immunology , Cyclotides/therapeutic use , Cyclotides/chemistry , Cyclotides/pharmacology , Immunosuppressive Agents/therapeutic use , Immunosuppressive Agents/pharmacology , Animals
12.
Nat Commun ; 15(1): 1971, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438397

ABSTRACT

The glutaminase enzymes GAC and GLS2 catalyze the hydrolysis of glutamine to glutamate, satisfying the 'glutamine addiction' of cancer cells. They are the targets of anti-cancer drugs; however, their mechanisms of activation and catalytic activity have been unclear. Here we demonstrate that the ability of GAC and GLS2 to form filaments is directly coupled to their catalytic activity and present their cryo-EM structures which provide a view of the conformational states essential for catalysis. Filament formation guides an 'activation loop' to assume a specific conformation that works together with a 'lid' to close over the active site and position glutamine for nucleophilic attack by an essential serine. Our findings highlight how ankyrin repeats on GLS2 regulate enzymatic activity, while allosteric activators stabilize, and clinically relevant inhibitors block, filament formation that enables glutaminases to catalyze glutaminolysis and support cancer progression.


Subject(s)
Glutaminase , Neoplasms , Glutamine , Cytoskeleton , Catalysis , Glutamic Acid
13.
Int J Radiat Biol ; 100(4): 565-572, 2024.
Article in English | MEDLINE | ID: mdl-38306486

ABSTRACT

PURPOSE: In the aftermath of a nuclear disaster or accident, survivors will suffer from radiation-induced normal tissue damage. Recovery after radiation exposure is dictated by several factors, one of which is degree of shielding at time of exposure. This study aims to characterize the short and late term changes in kinetics and magnitude of pancytopenia and blood chemistry in a model of heterogeneous radiation exposure, or partial body irradiation (PBI), compared to whole body irradiation (WBI). MATERIALS AND METHODS: Male C57BL/6 mice, 8-10 weeks of age, were WBI at 6 different doses (6, 6.1. 6.15, 6.2, 6.5, and 7.5 Gy) to establish the LD50. To determine the effect of shielding on blood cell counts and chemistry, animals were either WBI at 6 Gy (LD2230) or 6 Gy PBI with one leg shielding (LD030). Complete blood counts and chemistry were measured at 1, 5-, 10-, 20-, 30- and 120-days post-irradiation. RESULTS AND CONCLUSIONS: Irradiated animals had significant depletion of white blood cells, red blood cells and platelets up to 10 days post-irradiation. Separation between PBI and WBI were observed at 10- and 20-days post-irradiation at which point PBI animals showed sign of recovery while overall cell count remains depleted in WBI animals up to 30 days post-irradiation. In addition, significant changes were found in parameters indicative of hematopoietic injury including hemoglobin count, hematocrit count and white blood cell population. Significant changes were observed in kidney function with changes to blood urea nitrogen and calcium concentration at 5-days post-irradiation. At 10-days post-irradiation. liver function changes differentiated WBI from PBI animals. Long-term, irradiated animal's chemistry values and many blood counts were not significantly different from Sham. In conclusion, partial shielding ensured complete survival and demonstrated a different recovery kinetics of blood and chemistry parameters after irradiation compared to survivors of whole body irradiation and no single hemopoietic parameter was able to consistently differentiate irradiated from Sham animals. This seems to indicate that there is no single robust hemopoietic parameter to differentiate those exposed from those who were not due to the inherent variability in individual responses. Furthermore, there were no significant long-term effects on these blood parameters between survivors of WBI and PBI except that shielding accelerated recovery.


Subject(s)
Leukocytes , Radiation Exposure , Mice , Male , Animals , Mice, Inbred C57BL , Blood Cell Count , Radiation Dosage , Whole-Body Irradiation/adverse effects
14.
Nat Prod Res ; : 1-6, 2024 Feb 29.
Article in English | MEDLINE | ID: mdl-38422455

ABSTRACT

Five coumarins were isolated from the heartwood of Mansonia gagei, which included two newly discovered compounds, namely 11-hydroxypopulene E (1) and mansorin D (2), along with three previously identified compounds. The structures were determined through the utilisation of comprehensive spectroscopic data, ECD calculations, and a thorough comparison with existing literature data. The α-glucosidase inhibitory activities of all isolated compounds were assessed in yeast. Out of the compounds tested, compound 2 exhibited the most significant activity, displaying a percentage inhibition of 34.33% at a concentration of 200 µM.

15.
Bioorg Chem ; 145: 107181, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354503

ABSTRACT

The human CC chemokine receptor 8 (CCR8) has been extensively pursued as target for the treatment of various inflammatory disorders. More recently, the importance of CCR8 in the tumor microenvironment has been demonstrated, spurring the interest in CCR8 antagonism as therapeutic strategy in immuno-oncology. On a previously described naphthalene sulfonamide with CCR8 antagonistic properties, the concept of isosterism was applied, leading to the discovery of novel CCR8 antagonists with IC50 values in the nM range in both the CCL1 competition binding and CCR8 calcium mobilization assay. The excellent CCR8 antagonistic activity of the most potent congeners was rationalized by homology molecular modeling.


Subject(s)
Chemokines, CC , Receptors, Chemokine , Humans , Chemokines, CC/metabolism , Chemokine CCL1/metabolism , Receptors, Chemokine/chemistry , Receptors, Chemokine/metabolism , Amides , Receptors, CCR8 , Sulfonamides/pharmacology , Naphthalenes/pharmacology
16.
Curr Drug Deliv ; 2024 Jan 16.
Article in English | MEDLINE | ID: mdl-38310441

ABSTRACT

The biomedical field faces an ongoing challenge in developing more effective anti-cancer medication due to the significant burden that cancer poses on human health. Extensive research has been conducted on the utilization of natural polysaccharides in nanomedicine owing to their properties of biocompatibility, biodegradability, non-immunogenicity, and non-toxicity. These characteristics make them a potent drug delivery system for cancer therapy. The chitosan hyaluronic acid nanoparticle (CSHANp) system, consisting of chitosan and hyaluronic acid nanoparticles, has exhibited considerable potential as a nanocarrier for various cancer drugs, rendering it one of the most auspicious systems presently accessible. The CSHANps demonstrate remarkable drug loading capacity, precise control over drug release, and exceptional selectivity towards cancer cells. These properties enhance the therapeutic effectiveness against cancerous cells. This article aims to provide a comprehensive analysis of CSHANp, focusing on its characteristics, production techniques, applications, and future prospects.

17.
J Pept Sci ; 30(6): e3570, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38317283

ABSTRACT

Chemical pesticides remain the predominant method for pest management in numerous countries. Given the current landscape of agriculture, the development of biopesticides has become increasingly crucial. The strategy empowers farmers to efficiently manage pests and diseases, while prioritizing minimal adverse effects on the environment and human health, hence fostering sustainable management. In recent years, there has been a growing interest and optimism surrounding the utilization of peptide biopesticides for crop protection. These sustainable and environmentally friendly substances have been recognized as viable alternatives to synthetic pesticides due to their outstanding environmental compatibility and efficacy. Numerous studies have been conducted to synthesize and identify peptides that exhibit activity against significant plant pathogens. One of the peptide classes is cyclotides, which are cyclic cysteine-rich peptides renowned for their wide range of sequences and functions. In this review, we conducted a comprehensive analysis of cyclotides, focusing on their structural attributes, developmental history, significant biological functions in crop protection, techniques for identification and investigation, and the application of biotechnology to enhance cyclotide synthesis. The objective is to emphasize the considerable potential of cyclotides as the next generation of plant protection agents on the global scale.


Subject(s)
Agriculture , Cyclotides , Cyclotides/chemistry , Agriculture/methods , Biological Control Agents/chemistry , Pesticides/chemistry , Humans
18.
Trans R Soc Trop Med Hyg ; 118(6): 384-390, 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38261661

ABSTRACT

BACKGROUND: Children are especially vulnerable to Toxocara infection and its severe complications; however, there have not been any published data on the disease prevalence and treatment effectiveness in the population of Vietnamese children. This study was conducted to determine the prevalence of toxocariasis and explore factors associated with Toxocara infection in children aged 3-15 y in Ho Chi Minh City, Vietnam. METHODS: We conducted a cross-sectional study using a multistage cluster sampling approach in public schools. Blood samples were collected, and toxocariasis cases were confirmed, based on a history of contact with dogs/cats and positive anti-Toxocara antibody detection via ELISA. We calculated the percentage of seropositive children across gender, grade levels, districts and caregiver education. Multiple regression models were employed to identify potential risk factors. RESULTS: Anti-Toxocara antibodies were found in 14.2% of the 986 children studied. Significant variations in seropositivity were observed across grade levels, districts and caregiver education levels. Multivariable analysis identified caregiver education, contact with dogs/cats and improper handling of pet feces as seropositivity risk factors. CONCLUSION: This was the first community-based prevalence study of toxocariasis in a pediatric population in Vietnam. Implementation of preventive measures such as public education, routine fecal examinations and chemotherapeutic treatment of animals is highly recommended.


Subject(s)
Toxocara , Toxocariasis , Humans , Vietnam/epidemiology , Child , Toxocariasis/epidemiology , Cross-Sectional Studies , Male , Female , Animals , Adolescent , Risk Factors , Child, Preschool , Dogs , Seroepidemiologic Studies , Toxocara/immunology , Cats , Antibodies, Helminth/blood , Enzyme-Linked Immunosorbent Assay , Prevalence , Schools
19.
Toxicon ; 239: 107606, 2024 Feb 23.
Article in English | MEDLINE | ID: mdl-38181837

ABSTRACT

Cyclotides, plant-derived cysteine-rich peptides, exhibit a wide range of beneficial biological activities and possess exceptional structural stability. Cyclotides are commonly distributed throughout the Violaceae family. Viola dalatensis Gagnep, a Vietnamese species, has not been well studied, especially for cyclotides. This pioneering research explores cyclotides from V. dalatensis as antimicrobials. This study used a novel approach to enhance cyclotides after extraction. The approach combined 30% ammonium sulfate salt precipitation and RP-HPLC. A comprehensive analysis was performed to ascertain the overall protein content, flavonoids content, polyphenol content, and free radical scavenging capacity of compounds derived from V. dalatensis. Six known cyclotides were sequenced utilizing MS tandem. Semi-purified cyclotide mixtures (M1, M2, and M3) exhibited antibacterial efficacy against Bacillus subtilis (inhibitory diameters: 19.67-23.50 mm), Pseudomonas aeruginosa (22.17-23.50 mm), and Aspergillus flavus (14.67-21.33 mm). The enriched cyclotide precipitate from the stem extract demonstrated a minimum inhibitory concentration (MIC) of 0.08 mg/mL against P. aeruginosa, showcasing significant antibacterial effectiveness compared to the stem extract (MIC: 12.50 mg/mL). Considerable advancements have been achieved in the realm of cyclotides, specifically in their application as antimicrobial agents.


Subject(s)
Cyclotides , Viola , Cyclotides/pharmacology , Cyclotides/chemistry , Viola/chemistry , Viola/metabolism , Plant Extracts/pharmacology , Plant Extracts/chemistry , Anti-Bacterial Agents/chemistry , Vietnam
20.
bioRxiv ; 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-38077034

ABSTRACT

Some of the most metabolically diverse species of bacteria (e.g., Actinobacteria) have higher GC content in their DNA, differ substantially in codon usage, and have distinct protein folding environments compared to tractable expression hosts like Escherichia coli. Consequentially, expressing biosynthetic gene clusters (BGCs) from these bacteria in E. coli frequently results in a myriad of unpredictable issues with protein expression and folding, delaying the biochemical characterization of new natural products. Current strategies to achieve soluble, active expression of these enzymes in tractable hosts, such as BGC refactoring, can be a lengthy trial-and-error process. Cell-free expression (CFE) has emerged as 1) a valuable expression platform for enzymes that are challenging to synthesize in vivo, and as 2) a testbed for rapid prototyping that can improve cellular expression. Here, we use a type III polyketide synthase from Streptomyces griseus, RppA, which catalyzes the formation of the red pigment flaviolin, as a reporter to investigate BGC refactoring techniques. We synergistically tune promoter and codon usage to improve flaviolin production from cell-free expressed RppA. We then assess the utility of cell-free systems for prototyping these refactoring tactics prior to their implementation in cells. Overall, codon harmonization improves natural product synthesis more than traditional codon optimization across cell-free and cellular environments. Refactoring promoters and/or coding sequences via CFE can be a valuable strategy to rapidly screen for catalytically functional production of enzymes from BCGs. By showing the coordinators between CFE versus in vivo expression, this work advances CFE as a tool for natural product research.

SELECTION OF CITATIONS
SEARCH DETAIL