Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 76
Filter
Add more filters










Publication year range
1.
Acta Crystallogr E Crystallogr Commun ; 80(Pt 5): 486-488, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38721414

ABSTRACT

The title compound, [Co(C3H4N2)(C30H30N10)](BF4)2, is a five-coordinate CoII complex based on the neutral ligands tris-[(1-benzyl-triazol-4-yl)meth-yl]amine (tbta) and imidazole. It exhibits a distorted trigonal bipyramidal geometry in which the equatorial positions are occupied by the three N-atom donors from the triazole rings of the tripodal tbta ligand. The apical amine N-atom donor of tbta and the N-atom donor of the imidazole ligand occupy the axial positions of the coordination sphere. Two tetra-fluoro-borate anions provide charge balance in the crystal.

2.
Inorg Chem ; 62(39): 15952-15962, 2023 Oct 02.
Article in English | MEDLINE | ID: mdl-37725578

ABSTRACT

A comprehensive field- and temperature-dependent examination of nuclear magnetic resonance paramagnetic relaxation enhancements (PREs) for the constitutive protons of [Co(Tpm)2][BF4]2 is presented. Data for an apically substituted derivative clearly establish that bis-Tpm complexes of Co(II) undergo Jahn-Teller dynamics about the molecular threefold axis. PREs from the parent Tpm complex were used to numerically extract the electron relaxation times (T1e). The Tpm complex showed field-dependent behavior, with an approximately 40% higher activation barrier than the related trispyrazolylborate (Tp) complex, based on fits to the T1e vs T, B0 data. Analysis of the field-dependent line widths revealed a surprisingly large contribution from susceptibility (Curie) relaxation (20-35% at the highest field), and a molecular radius (9.5 Å) that is consistent with a tightly associated counterion slowing rotation in solution. Density functional theory showed a shared vibration that is consistent with the Jahn-Teller and appears proportionately higher in energy in [Co(Tpm)2]2+. Complete active-space self-consistent field calculations support ascribing electron relaxation to enhanced mixing of the two Eg orbital sets that accompanies the tetragonal distortion and the differences in electron correlation times to the higher Jahn-Teller activation barrier in [Co(Tpm)2]2+.

3.
J Org Chem ; 86(21): 15085-15095, 2021 11 05.
Article in English | MEDLINE | ID: mdl-34641678

ABSTRACT

1H NMR spectroscopy is a powerful tool for the conformational analysis of ortho-phenylene foldamers in solution. However, as o-phenylenes are integrated into ever more complex systems, we are reaching the limits of what can be analyzed by 1H- and 13C-based NMR techniques. Here, we explore fluorine labeling of o-phenylene oligomers for analysis by 19F NMR spectroscopy. Two series of fluorinated oligomers have been synthesized. Optimization of monomers for Suzuki coupling enables an efficient stepwise oligomer synthesis. The oligomers all adopt well-folded geometries in solution, as determined by 1H NMR spectroscopy and X-ray crystallography. 19F NMR experiments complement these methods well. The resolved singlets of one-dimensional 19F{1H} spectra are very useful for determining relative conformer populations. The additional information from two-dimensional 19F NMR spectra is also clearly valuable when making 1H assignments. The comparison of 19F isotropic shielding predictions to experimental chemical shifts is not, however, currently sufficient by itself to establish o-phenylene geometries.


Subject(s)
Fluorides , Fluorine , Crystallography, X-Ray , Magnetic Resonance Spectroscopy , Molecular Conformation
4.
Bioorg Med Chem ; 40: 116183, 2021 06 15.
Article in English | MEDLINE | ID: mdl-33965839

ABSTRACT

In an effort to probe the biophysical mechanisms of inhibition for ten previously-reported inhibitors of metallo-ß-lactamases (MBL) with MBL IMP-1, equilibrium dialysis, metal analyses coupled with atomic absorption spectroscopy (AAS), native state mass spectrometry (native MS), and ultraviolet-visible spectrophotometry (UV-VIS) were used. 6-(1H-tetrazol-5-yl) picolinic acid (1T5PA), ANT431, D/l-captopril, thiorphan, and tiopronin were shown to form IMP-1/Zn(II)/inhibitor ternary complexes, while dipicolinic acid (DPA) and 4-(3-aminophenyl)pyridine-2,6-dicarboxylic acid (3AP-DPA) stripped some metal from the active site of IMP but also formed ternary complexes. DPA and 3AP-DPA stripped less metal from IMP-1 than from VIM-2 but stripped more metal from IMP-1 than from NDM-1. In contrast to a previous report, pterostilbene does not appear to bind to IMP-1 under our conditions. These results, along with previous studies, demonstrate similar mechanisms of inhibition toward different MBLs for different MBL inhibitors.


Subject(s)
Dicarboxylic Acids/pharmacology , Enzyme Inhibitors/pharmacology , Sulfhydryl Compounds/pharmacology , Sulfides/pharmacology , beta-Lactamases/metabolism , Dicarboxylic Acids/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemistry , Mass Spectrometry , Molecular Structure , Pseudomonas aeruginosa/enzymology , Serratia marcescens/enzymology , Spectrophotometry, Atomic , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Sulfhydryl Compounds/chemistry , Sulfides/chemistry
5.
Dalton Trans ; 50(5): 1712-1720, 2021 Feb 09.
Article in English | MEDLINE | ID: mdl-33447836

ABSTRACT

We report synthetic, structural and reactivity investigations of tris-(2-pyridylmethyl)amine (TPA)-ligated Cu(ii) 1,3-diketonate complexes. These complexes exhibit anaerobic retro-Claisen type C-C bond cleavage reactivity which exceeds that found in analogs supported by chelate ligands with fewer and/or weaker pyridyl interactions.

6.
J Biol Inorg Chem ; 25(5): 717-727, 2020 08.
Article in English | MEDLINE | ID: mdl-32500360

ABSTRACT

Due to the rapid proliferation of antibiotic-resistant pathogenic bacteria, known as carbapenem-resistant enterobacteriaceae, the efficacy of ß-lactam antibiotics is threatened. ß-lactam antibiotics constitute over 50% of the available antibiotic arsenal. Recent efforts have been focused on developing inhibitors to these enzymes. In an effort to understand the mechanism of inhibition(s) of four FDA-approved thiol-containing drugs that were previously reported to be inhibitors of New Delhi metallo-ß-lactamase (NDM-1), various biochemical and spectroscopic techniques were used. Isothermal titration calorimetry demonstrated the binding affinity to NDM-1 corresponds to the reported IC50 values of the inhibitors. Equilibrium dialyses and metal analyses demonstrated that all of these inhibitors formed ternary complexes with ZnZn-NDM-1. Spectroscopic studies on CoCo-NDM-1 revealed two distinct binding modes for the thiol-containing compounds. These findings validate the need to further investigate the mechanism of inhibition of MBL inhibitors. Further research to identify inhibition capabilities beyond reported IC50 values is necessary for understanding the binding modes of these identified compounds and to provide the necessary foundation for developing clinically relevant MBL inhibitors.


Subject(s)
Sulfhydryl Compounds/pharmacology , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism , Humans , Molecular Docking Simulation , Molecular Structure , Sulfhydryl Compounds/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/genetics
7.
mBio ; 10(6)2019 11 19.
Article in English | MEDLINE | ID: mdl-31744917

ABSTRACT

To understand the evolution of Verona integron-encoded metallo-ß-lactamase (VIM) genes (blaVIM) and their clinical impact, microbiological, biochemical, and structural studies were conducted. Forty-five clinically derived VIM variants engineered in a uniform background and expressed in Escherichia coli afforded increased resistance toward all tested antibiotics; the variants belonging to the VIM-1-like and VIM-4-like families exhibited higher MICs toward five out of six antibiotics than did variants belonging to the widely distributed and clinically important VIM-2-like family. Generally, maximal MIC increases were observed when cephalothin and imipenem were tested. Additionally, MIC determinations under conditions with low zinc availability suggested that some VIM variants are also evolving to overcome zinc deprivation. The most profound increase in resistance was observed in VIM-2-like variants (e.g., VIM-20 H229R) at low zinc availability. Biochemical analyses reveal that VIM-2 and VIM-20 exhibited similar metal binding properties and steady-state kinetic parameters under the conditions tested. Crystal structures of VIM-20 in the reduced and oxidized forms at 1.25 Å and 1.37 Å resolution, respectively, show that Arg229 forms an additional salt bridge with Glu171. Differential scanning fluorimetry of purified proteins and immunoblots of periplasmic extracts revealed that this difference increases thermostability and resistance to proteolytic degradation when zinc availability is low. Therefore, zinc scarcity appears to be a selective pressure driving the evolution of multiple metallo-ß-lactamase families, although compensating mutations use different mechanisms to enhance resistance.IMPORTANCE Antibiotic resistance is a growing clinical threat. One of the most serious areas of concern is the ability of some bacteria to degrade carbapenems, drugs that are often reserved as last-resort antibiotics. Resistance to carbapenems can be conferred by a large group of related enzymes called metallo-ß-lactamases that rely on zinc ions for function and for overall stability. Here, we studied an extensive panel of 45 different metallo-ß-lactamases from a subfamily called VIM to discover what changes are emerging as resistance evolves in clinical settings. Enhanced resistance to some antibiotics was observed. We also found that at least one VIM variant developed a new ability to remain more stable under conditions where zinc availability is limited, and we determined the origin of this stability in atomic detail. These results suggest that zinc scarcity helps drive the evolution of this resistance determinant.


Subject(s)
Drug Resistance, Bacterial , Zinc/metabolism , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Carbapenems/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Microbial Sensitivity Tests , Models, Molecular , Mutation , Protein Conformation , Protein Stability , beta-Lactamases/genetics
8.
Chemistry ; 25(45): 10625-10632, 2019 Aug 09.
Article in English | MEDLINE | ID: mdl-31066934

ABSTRACT

The single-molecule magnet (SMM) properties of a series of ferrocenium complexes, [Fe(η5 -C5 R5 )2 ]+ (R=Me, Bn), are reported. In the presence of an applied dc field, the slow dynamics of the magnetization in [Fe(η5 -C5 Me5 )2 ]BArF are revealed. Multireference quantum mechanical calculations show a large energy difference between the ground and first excited states, excluding the commonly invoked, thermally activated (Orbach-like) mechanism of relaxation. In contrast, a detailed analysis of the relaxation time highlights that both direct and Raman processes are responsible for the SMM properties. Similarly, the bulky ferrocenium complexes, [Fe(η5 -C5 Bn5 )2 ]BF4 and [Fe(η5 -C5 Bn5 )2 ]PF6 , also exhibit magnetization slow dynamics, however an additional relaxation process is clearly detected for these analogous systems.

9.
ChemMedChem ; 14(13): 1271-1282, 2019 07 03.
Article in English | MEDLINE | ID: mdl-31124602

ABSTRACT

New Delhi metallo-ß-lactamase-1 (NDM-1) poses an immediate threat to our most effective and widely prescribed drugs, the ß-lactam-containing class of antibiotics. There are no clinically relevant inhibitors to combat NDM-1, despite significant efforts toward their development. Inhibitors that use a carboxylic acid motif for binding the ZnII ions in the active site of NDM-1 make up a large portion of the >500 inhibitors reported to date. New and structurally diverse scaffolds for inhibitor development are needed urgently. Herein we report the isosteric replacement of one carboxylate group of dipicolinic acid (DPA) to obtain DPA isosteres with good inhibitory activity against NDM-1 (and related metallo-ß-lactamases, IMP-1 and VIM-2). It was determined that the choice of carboxylate isostere influences both the potency of NDM-1 inhibition and the mechanism of action. Additionally, we show that an isostere with a metal-stripping mechanism can be re-engineered into an inhibitor that favors ternary complex formation. This work provides a roadmap for future isosteric replacement of routinely used metal binding motifs (i.e., carboxylic acids) for the generation of new entities in NDM-1 inhibitor design and development.


Subject(s)
Picolinic Acids/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamases/metabolism , Inhibitory Concentration 50 , Picolinic Acids/metabolism , Protein Binding , Zinc/chemistry , beta-Lactamase Inhibitors/chemical synthesis , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/chemistry
10.
J Am Chem Soc ; 141(7): 3153-3159, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30678456

ABSTRACT

Carbon-carbon bond-forming reductive elimination from elusive organocopper(III) complexes has been considered the key step in many copper-catalyzed and organocuprate reactions. However, organocopper(III) complexes with well-defined structures that can undergo reductive elimination are extremely rare, especially for the formation of Csp3-Csp3 bonds. We report herein a general method for the synthesis of a series of [alkyl-CuIII-(CF3)3]- complexes, the structures of which have been unequivocally characterized by NMR spectroscopy, mass spectrometry, and X-ray crystal diffraction. At elevated temperature, these complexes undergo reductive elimination following first-order kinetics, forming alkyl-CF3 products with good yields (up to 91%). Both kinetic studies and DFT calculations indicate that the reductive elimination to form Csp3-CF3 bonds proceeds through a concerted transition state, with a Δ H⧧ = 20 kcal/mol barrier.

11.
J Biol Inorg Chem ; 24(1): 31-37, 2019 02.
Article in English | MEDLINE | ID: mdl-30353442

ABSTRACT

Co(II) substitution into the copper amine oxidases (CAOs) has been an effective tool for evaluating the mechanism of oxygen reduction in these enzymes. However, formation of hydrogen peroxide during turnover raises questions about the relevant oxidation state of the cobalt in these enzymes and, therefore, the interpretation of the activity of the metal-substituted enzyme with respect to its mechanism of action. In this study, Co(II) was incorporated into the CAO from Hansenula polymorpha (HPAO). The effect of hydrogen peroxide on the catalytic activity of cobalt-substituted HPAO was evaluated. Hydrogen peroxide, either generated during turnover or added exogenously, caused a decrease in the activity of the enzyme but did not oxidize Co(II) to Co(III). These results are in strong contrast with results from the CAO from Arthrobacter globiformis (AGAO), where hydrogen peroxide causes an increase in the activity of the enzyme as the Co(II) is oxidized to Co(III). The results of this study with HPAO support previous reports that have shown that this enzyme acts by transferring an electron directly from the reduced TPQ cofactor to dioxygen rather than passing the electron through the bound metal ion. Furthermore, these results provide additional evidence to support the idea that different CAOs use different mechanisms for catalysis.


Subject(s)
Amine Oxidase (Copper-Containing)/metabolism , Cobalt/metabolism , Fungal Proteins/metabolism , Pichia/metabolism , Copper/metabolism , Kinetics , Oxidation-Reduction , Oxygen/metabolism , Pichia/enzymology
12.
Biochemistry ; 57(35): 5218-5229, 2018 09 04.
Article in English | MEDLINE | ID: mdl-30106565

ABSTRACT

In an effort to evaluate whether a recently reported putative metallo-ß-lactamase (MßL) contains a novel MßL active site, SPS-1 from Sediminispirochaeta smaragdinae was overexpressed, purified, and characterized using spectroscopic and crystallographic studies. Metal analyses demonstrate that recombinant SPS-1 binds nearly 2 equiv of Zn(II), and steady-state kinetic studies show that the enzyme hydrolyzes carbapenems and certain cephalosporins but not ß-lactam substrates with bulky substituents at the 6/7 position. Spectroscopic studies of Co(II)-substituted SPS-1 suggest a novel metal center in SPS-1, with a reduced level of spin coupling between the metal ions and a novel Zn1 metal binding site. This site was confirmed with a crystal structure of the enzyme. The structure shows a Zn2 site that is similar to that in NDM-1 and other subclass B1 MßLs; however, the Zn1 metal ion is coordinated by two histidine residues and a water molecule, which is held in position by a hydrogen bond network. The Zn1 metal is displaced nearly 1 Å from the position reported in other MßLs. The structure also shows extended helices above the active site, which create a binding pocket that precludes the binding of substrates with large, bulky substituents at the 6/7 position of ß-lactam antibiotics. This study reveals a novel metal binding site in MßLs and suggests that the targeting of metal binding sites in MßLs with inhibitors is now more challenging with the identification of this new MßL.


Subject(s)
Spirochaeta/enzymology , Zinc/metabolism , beta-Lactamases/metabolism , beta-Lactams/metabolism , Binding Sites , Catalytic Domain , Crystallography, X-Ray , Kinetics , Models, Molecular , Phylogeny , Protein Conformation , Zinc/chemistry , beta-Lactamases/chemistry , beta-Lactams/chemistry
14.
J Biol Chem ; 293(32): 12606-12618, 2018 08 10.
Article in English | MEDLINE | ID: mdl-29909397

ABSTRACT

Infections by carbapenem-resistant Enterobacteriaceae are difficult to manage owing to broad antibiotic resistance profiles and because of the inability of clinically used ß-lactamase inhibitors to counter the activity of metallo-ß-lactamases often harbored by these pathogens. Of particular importance is New Delhi metallo-ß-lactamase (NDM), which requires a di-nuclear zinc ion cluster for catalytic activity. Here, we compare the structures and functions of clinical NDM variants 1-17. The impact of NDM variants on structure is probed by comparing melting temperature and refolding efficiency and also by spectroscopy (UV-visible, 1H NMR, and EPR) of di-cobalt metalloforms. The impact of NDM variants on function is probed by determining the minimum inhibitory concentrations of various antibiotics, pre-steady-state and steady-state kinetics, inhibitor binding, and zinc dependence of resistance and activity. We observed only minor differences among the fully loaded di-zinc enzymes, but most NDM variants had more distinguishable selective advantages in experiments that mimicked zinc scarcity imposed by typical host defenses. Most NDM variants exhibited improved thermostability (up to ∼10 °C increased Tm ) and improved zinc affinity (up to ∼10-fold decreased Kd, Zn2). We also provide first evidence that some NDM variants have evolved the ability to function as mono-zinc enzymes with high catalytic efficiency (NDM-15, ampicillin: kcat/Km = 5 × 106 m-1 s-1). These findings reveal the molecular mechanisms that NDM variants have evolved to overcome the combined selective pressures of ß-lactam antibiotics and zinc deprivation.


Subject(s)
Mutation , Zinc/pharmacology , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Anti-Bacterial Agents/metabolism , Crystallography, X-Ray , Enzyme Stability , Humans , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation , beta-Lactamase Inhibitors/metabolism , beta-Lactamases/genetics , beta-Lactamases/isolation & purification
15.
ACS Infect Dis ; 4(2): 135-145, 2018 02 09.
Article in English | MEDLINE | ID: mdl-29091730

ABSTRACT

Metallo-ß-lactamases (MBLs) are a growing threat to the continued efficacy of ß-lactam antibiotics. Recently, aspergillomarasmine A (AMA) was identified as an MBL inhibitor, but the mode of inhibition was not fully characterized. Equilibrium dialysis and metal analysis studies revealed that 2 equiv of AMA effectively removes 1 equiv of Zn(II) from MBLs NDM-1, VIM-2, and IMP-7 when the MBL is at micromolar concentrations. Conversely, 1H NMR studies revealed that 2 equiv of AMA remove 2 equiv of Co(II) from Co(II)-substituted NDM-1, VIM-2, and IMP-7 when the MBL/AMA are at millimolar concentrations. Our findings reveal that AMA inhibits the MBLs by removal of the active site metal ions required for ß-lactam hydrolysis among the most clinically significant MBLs.


Subject(s)
Aspartic Acid/analogs & derivatives , beta-Lactamases/chemistry , Aspartic Acid/chemistry , Aspartic Acid/pharmacology , Biological Products/chemistry , Biological Products/pharmacology , Cobalt/chemistry , Enzyme Activation/drug effects , Kinetics , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Structure , Protein Binding , Quantitative Structure-Activity Relationship , Zinc/chemistry , beta-Lactamase Inhibitors/chemistry , beta-Lactamase Inhibitors/pharmacology , beta-Lactamases/metabolism
16.
Inorg Chem ; 57(1): 187-203, 2018 Jan 02.
Article in English | MEDLINE | ID: mdl-29235857

ABSTRACT

Herein, we report the synthesis and characterization of two dinuclear FeIIIZnII complexes [FeIIIZnIILP1] (1) and [FeIIIZnIILP2] (2), in which LP1 and LP2 are conjugated systems containing one and two pyrene groups, respectively, connected via the diamine -HN(CH2)4NH- spacer to the well-known N5O2-donor H2L ligand (H2L = 2-bis{[(2-pyridylmethyl)aminomethyl]-6-[(2-hydroxybenzyl)(2-pyridylmethyl)]aminomethyl}-4-methylphenol). The complex [FeIIIZnIIL1] (3), in which H2L was modified to H2L1, with a carbonyl group attached to the terminal phenol group, was included in this study for comparison purposes.1 Both complexes 1 and 2 were satisfactorily characterized in the solid state and in solution. Extended X-ray absorption fine structure data for 1 and 3 in an acetonitrile solution show that the multiply bridged structure seen in the solid state of 3 is retained in solution. Potentiometric and UV-vis titration of 1 and 2 show that electrostatic interaction between the protonated amino groups and coordinated water molecules significantly decreases the pKa of the iron(III)-bound water compared to those of 3. On the other hand, catalytic activity studies using 1 and 2 in the hydrolysis of the activated substrate bis(2,4-dinitrophenyl)phosphate (BDNPP) resulted in a significant increase in the association of the substrate (Kass ≅ 1/KM) compared to that of 3 because of electrostatic and hydrophobic interactions between BDNPP and the side-chain diaminopyrene of the ligands H2LP1 and H2LP2. In addition, the introduction of the pyrene motifs in 1 and 2 enhanced their activity toward DNA and as effective antitumor drugs, although the biochemical mechanism of the latter effect is currently under investigation. These complexes represent interesting examples of how to promote an increase in the activity of traditional artificial metal nucleases by introducing second-coordination-sphere effects.


Subject(s)
Antineoplastic Agents/pharmacology , Biomimetics , DNA/drug effects , Ferric Compounds/pharmacology , Hydrolases/metabolism , Organometallic Compounds/pharmacology , Zinc/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/metabolism , Cell Proliferation/drug effects , Cell Survival/drug effects , Crystallography, X-Ray , DNA Cleavage/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Ferric Compounds/chemistry , Ferric Compounds/metabolism , Humans , Hydrolases/chemistry , Ligands , Models, Molecular , Molecular Conformation , Organometallic Compounds/chemistry , Organometallic Compounds/metabolism , Structure-Activity Relationship , Tumor Cells, Cultured , Zinc/chemistry , Zinc/metabolism
17.
Inorg Chem ; 56(21): 13029-13034, 2017 Nov 06.
Article in English | MEDLINE | ID: mdl-28991446

ABSTRACT

The tripodal amine chelate with two pyridyl groups and an α-hydroxy acid (AHA) group, Pyr-TPA-AHA, was synthesized. Different Fe(III) complexes form with this chelate depending upon the counterion of the Fe(III) source used in the synthesis. A dinuclear complex, Fe(III)2(Pyr-TPA-AHA)2(µ-O), 1, and mononuclear complexes Fe(III)(Pyr-TPA-AHA)X (X = Cl- or Br-, 2 and 3, respectively) were synthesized. 2 can be easily converted to 1 by addition of silver nitrate or a large excess of water. The structure of 1 was solved by X-ray crystallography (C32H34N6O7Fe2·13H2O, a = 14.1236(6) Å, b = 14.1236(6) Å, c = 21.7469(15) Å, α = ß = γ = 90°, tetragonal, P42212, Z = 4). 2 and 3 each have simple quasireversible cyclic voltammograms with E1/2 (vs aqueous Ag/AgCl) = +135 mV for 2 and +470 for 3 in acetonitrile. The cyclic voltammogram for 1 in acetonitrile has a quasireversible feature at E1/2 = -285 mV and an irreversible cathodic feature at -1140 mV. All three complexes are photochemically active upon irradiation with UV light, resulting in cleavage of the AHA group and reduction of the iron to Fe(II). Photolysis of 1 results in reduction of both Fe(III) ions in the dinuclear complex for each AHA group that is cleaved, while photolysis of 2 and 3 results in reduction of a single Fe(III) for each AHA cleavage. The quantum yields for 2 and 3 are significantly higher than that of 1.

18.
ACS Infect Dis ; 3(12): 927-940, 2017 12 08.
Article in English | MEDLINE | ID: mdl-28965402

ABSTRACT

Use and misuse of antibiotics have driven the evolution of serine ß-lactamases to better recognize new generations of ß-lactam drugs, but the selective pressures driving evolution of metallo-ß-lactamases are less clear. Here, we present evidence that New Delhi metallo-ß-lactamase (NDM) is evolving to overcome the selective pressure of zinc(II) scarcity. Studies of NDM-1, NDM-4 (M154L), and NDM-12 (M154L, G222D) demonstrate that the point mutant M154L, contained in 50% of clinical NDM variants, selectively enhances resistance to the penam ampicillin at low zinc(II) concentrations relevant to infection sites. Each of the clinical variants is shown to be progressively more thermostable and to bind zinc(II) more tightly than NDM-1, but a selective enhancement of penam turnover at low zinc(II) concentrations indicates that most of the improvement derives from catalysis rather than stability. X-ray crystallography of NDM-4 and NDM-12, as well as bioinorganic spectroscopy of dizinc(II), zinc(II)/cobalt(II), and dicobalt(II) metalloforms probe the mechanism of enhanced resistance and reveal perturbations of the dinuclear metal cluster that underlie improved catalysis. These studies support the proposal that zinc(II) scarcity, rather than changes in antibiotic structure, is driving the evolution of new NDM variants in clinical settings.


Subject(s)
Zinc/pharmacology , beta-Lactamases/physiology , Crystallography, X-Ray , Enzyme Stability , Humans , Microbial Sensitivity Tests , beta-Lactamases/chemistry , beta-Lactamases/classification
19.
Inorg Chem ; 56(19): 11721-11728, 2017 Oct 02.
Article in English | MEDLINE | ID: mdl-28898098

ABSTRACT

A combination of XAS, UV-vis, NMR, and EPR was used to examine the binding of a series of α-hydroxythiones to CoCA. All three appear to bind preferentially in their neutral, protonated forms. Two of the three clearly bind in a monodentate fashion, through the thione sulfur alone. Thiomaltol (TM) appears to show some orientational preference, on the basis of the NMR, while it appears that thiopyromeconic acid (TPMA) retains rotational freedom. In contrast, allothiomaltol (ATM), after initially binding in its neutral form, presumably through the thione sulfur, forms a final complex that is five-coordinate via bidentate coordination of ATM. On the basis of optical titrations, we speculate that this may be due to the lower initial pKa of ATM (8.3) relative to those of TM (9.0) and TPMA (9.5). Binding through the thione is shown to reduce the hydroxyl pKa by ∼0.7 pH unit on metal binding, bringing only ATM's pKa close to the pH of the experiment, facilitating deprotonation and subsequent coordination of the hydroxyl. The data predict the presence of a solvent-exchangeable proton on TM and TPMA, and Q-band 2-pulse ESEEM experiments on CoCA + TM suggest that the proton is present. ESE-detected EPR also showed a surprising frequency dependence, giving only a subset of the expected resonances at X-band.

20.
Nat Commun ; 8(1): 538, 2017 09 14.
Article in English | MEDLINE | ID: mdl-28912448

ABSTRACT

Carbapenem-resistant Enterobacteriaceae threaten human health, since carbapenems are last resort drugs for infections by such organisms. Metallo-ß-lactamases (MßLs) are the main mechanism of resistance against carbapenems. Clinically approved inhibitors of MBLs are currently unavailable as design has been limited by the incomplete knowledge of their mechanism. Here, we report a biochemical and biophysical study of carbapenem hydrolysis by the B1 enzymes NDM-1 and BcII in the bi-Zn(II) form, the mono-Zn(II) B2 Sfh-I and the mono-Zn(II) B3 GOB-18. These MßLs hydrolyse carbapenems via a similar mechanism, with accumulation of the same anionic intermediates. We characterize the Michaelis complex formed by mono-Zn(II) enzymes, and we identify all intermediate species, enabling us to propose a chemical mechanism for mono and binuclear MßLs. This common mechanism open avenues for rationally designed inhibitors of all MßLs, notwithstanding the profound differences between these enzymes' active site structure, ß-lactam specificity and metal content.Carbapenem-resistant bacteria pose a major health threat by expressing metallo-ß-lactamases (MßLs), enzymes able to hydrolyse these life-saving drugs. Here the authors use biophysical and computational methods and show that different MßLs share the same reaction mechanism, suggesting new strategies for drug design.


Subject(s)
Carbapenems/metabolism , Zinc/metabolism , beta-Lactamases/chemistry , beta-Lactamases/metabolism , Carbapenems/chemistry , Hydrolysis , Imipenem/chemistry , Imipenem/metabolism , Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , X-Ray Absorption Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...