Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Front Pharmacol ; 15: 1333085, 2024.
Article in English | MEDLINE | ID: mdl-38344180

ABSTRACT

Jojoba (Simmondsia chinensis L.) wax was previously reported to increase cutaneous wound healing, ameliorate acne and psoriasis manifestations, and reduce oxidative stress and inflammation. However, its potential cosmetic properties have not been fully investigated. Thus, the current study aimed to evaluate the anti-inflammatory activities of jojoba wax and its impact on the synthesis of extracellular components following topical application. The fatty acid and fatty alcohol profiles of two industrial and two lab-scale cold-press jojoba waxes were analyzed along with total tocopherol and phytosterol content. The dermo-cosmetic effect of all jojoba wax preparations was evaluated ex-vivo, using the human skin organ culture model, which emulates key features of intact tissue. The ability of jojoba wax to reduce secreted levels of key pro-inflammatory cytokines and the safety of the applications in the ex-vivo model were evaluated. In addition, the impact on the synthesis of pro-collagen and hyaluronic acid levels upon treatment was investigated. The results demonstrate that topically applied jojoba wax can reduce LPS-induced secretion of IL-6, IL-8, and TNFα by approx. 30% compared to untreated skin. This effect was enhanced when treatment was combined with low non-toxic levels of Triton X-100, and its efficacy was similar to the anti-inflammatory activity of dexamethasone used as a positive control. In addition, mRNA and protein levels of collagen III and synthesis of hyaluronic acid were markedly increased upon topical application of jojoba. Moreover, the enhanced content of extracellular matrix (ECM) components correlated with the enhanced expression of TGFß1. Collectively, our results further demonstrate that jojoba can reduce local skin inflammation, and this effect may be increased by emulsifier which increases its bioavailability. In addition, the finding that topical application of jojoba wax enhances the synthesis of pro-collagen and hyaluronic acid and may be beneficial in the treatment of age-related manifestations.

2.
Plants (Basel) ; 12(17)2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37687378

ABSTRACT

Although jojoba (Simmondsia chinensis) has been cultivated for years, information on its N requirements is limited. A 6-year study of mature jojoba plants grown under field conditions with an intensive management regime evaluated the effect of N application rate on plant nutrient status, growth, and productivity, and nitrate accumulation in the soil. Five levels of N application were tested: 50, 150, 250, 370, and 500 kg N ha-1. Fertilizers were provided throughout the growing season via a subsurface drip irrigation system. Leaf N concentration, in both spring and summer, reflected the level of N applied. A diagnostic leaf (youngest leaf that has reached full size) concentration of 1.3% N was identified as the threshold for N deficiency. Increasing rates of N application resulted in higher P levels in young leaves. Plant K status, as reflected in the leaf analysis, was not affected by N treatment but was strongly affected by fruit load. Vegetative growth was inhibited when only 50 kg N ha-1 was applied. Soil analysis at the end of the fertilization season showed substantial accumulation of nitrate for the two highest application rates. Considering productivity, N costs, and environmental risk, 150 kg N ha-1 is the recommended dosage for intensively grown jojoba. N deficiencies can be identified using leaf analysis, and excess N can be detected via soil sampling toward the end of the growing season. These results and tools will facilitate precise N fertilization in intensive jojoba plantations.

3.
Compr Rev Food Sci Food Saf ; 22(6): 4302-4354, 2023 11.
Article in English | MEDLINE | ID: mdl-37616018

ABSTRACT

Increasing evidence regarding lipids' beneficial effects on human health has changed the common perception of consumers and dietary officials about the role(s) of food lipids in a healthy diet. However, lipids are a wide group of molecules with specific nutritional and bioactive properties. To understand their true nutritional and functional value, robust methods are needed for accurate identification and quantification. Specific analytical strategies are crucial to target specific classes, especially the ones present in trace amounts. Finding a unique and comprehensive methodology to cover the full lipidome of each foodstuff is still a challenge. This review presents an overview of the lipids nutritionally relevant in foods and new trends in food lipid analysis for each type/class of lipids. Food lipid classes are described following the LipidMaps classification, fatty acids, endocannabinoids, waxes, C8 compounds, glycerophospholipids, glycerolipids (i.e., glycolipids, betaine lipids, and triglycerides), sphingolipids, sterols, sercosterols (vitamin D), isoprenoids (i.e., carotenoids and retinoids (vitamin A)), quinones (i.e., coenzyme Q, vitamin K, and vitamin E), terpenes, oxidized lipids, and oxylipin are highlighted. The uniqueness of each food group: oil-, protein-, and starch-rich, as well as marine foods, fruits, and vegetables (water-rich) regarding its lipid composition, is included. The effect of cooking, food processing, and storage, in addition to the importance of lipidomics in food quality and authenticity, are also discussed. A critical review of challenges and future trends of the analytical approaches and computational methods in global food lipidomics as the basis to increase consumer awareness of the significant role of lipids in food quality and food security worldwide is presented.


Subject(s)
Lipidomics , Lipids , Humans , Lipidomics/methods , Fatty Acids , Triglycerides , Fruit
5.
Pharmaceutics ; 15(3)2023 Mar 14.
Article in English | MEDLINE | ID: mdl-36986806

ABSTRACT

Orthosiphon stamineus is a popular folk herb used to treat diabetes and some other disorders. Previous studies have shown that O. stamineus extracts were able to balance blood glucose levels in diabetic rat animal models. However, the antidiabetic mechanism of O. stamineus is not fully known. This study was carried out to test the chemical composition, cytotoxicity, and antidiabetic activity of O. stamineus (aerial) methanol and water extracts. GC/MS phytochemical analysis of O. stamineus methanol and water extracts revealed 52 and 41 compounds, respectively. Ten active compounds are strong antidiabetic candidates. Oral treatment of diabetic mice with O. stamineus extracts for 3 weeks resulted significant reductions in blood glucose levels from 359 ± 7 mg/dL in diabetic non-treated mice to 164 ± 2 mg/dL and 174 ± 3 mg/dL in water- and methanol-based-extract-treated mice, respectively. The efficacy of O. stamineus extracts in augmenting glucose transporter-4 (GLUT4) translocation to the plasma membrane (PM) was tested in a rat muscle cell line stably expressing myc-tagged GLUT4 (L6-GLUT4myc) using enzyme-linked immunosorbent assay. The methanol extract was more efficient in enhancing GLUT4 translocation to the PM. It increased GLUT4 translocation at 250 µg/mL to 279 ± 15% and 351 ± 20% in the absence and presence of insulin, respectively. The same concentration of water extract enhanced GLUT4 translocation to 142 ± 2.5% and 165 ± 5% in the absence and presence of insulin, respectively. The methanol and water extracts were safe up to 250 µg/mL as measured with a Methylthiazol Tetrazolium (MTT) cytotoxic assay. The extracts exhibited antioxidant activity as measured by 2,2-diphenyl-1-picrylhydrazyl (DPPH) assay. O. stamineus methanol extract reached the maximal inhibition of 77 ± 10% at 500 µg/mL, and O. stamineus water extract led to 59 ± 3% inhibition at the same concentration. These findings indicate that O. stamineus possesses antidiabetic activity in part by scavenging the oxidants and enhancing GLUT4 translocation to the PM in skeletal muscle.

6.
Talanta ; 247: 123545, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-35597022

ABSTRACT

Half of the harvested food is lost due to rots caused by microorganisms. Plants emit various volatile organic compounds (VOCs) into their surrounding environment, and the VOC profiles of healthy crops are altered upon infection. In this study, a whole-cell bacterial biosensor was used for the early identification of potato tuber soft rot disease caused by the pectinolytic bacteria Pectobacterium in potato tubers. The detection is based on monitoring the luminescent responses of the bacteria panel to changes in the VOC profile following inoculation. First, gas chromatography-mass spectrometry (GC-MS) was used to specify the differences between the VOC patterns of the inoculated and non-inoculated potato tubers during early infection. Five VOCs were identified, 1-octanol, phenylethyl alcohol, 2-ethyl hexanol, nonanal, and 1-octen-3-ol. Then, the infection was detected by the bioreporter bacterial panel, firstly measured in a 96-well plate in solution, and then also tested in potato plugs and validated in whole tubers. Examination of the bacterial panel responses showed an extensive cytotoxic effect over the testing period, as seen by the elevated induction factor (IF) values in the bacterial strain TV1061 after exposure to both potato plugs and whole tubers. Moreover, quorum sensing influences were also observed by the elevated IF values in the bacterial strain K802NR. The developed whole-cell biosensor system based on bacterial detection will allow more efficient crop management during postharvest, storage, and transport of crops, to reduce food losses.


Subject(s)
Biosensing Techniques , Pectobacterium , Solanum tuberosum , Volatile Organic Compounds , Plant Diseases
7.
Antioxidants (Basel) ; 12(1)2022 Dec 24.
Article in English | MEDLINE | ID: mdl-36670894

ABSTRACT

Reactive oxygen species (ROS) and oxidative stress increase susceptibility to neurodegeneration and other age-related pathologies. We have previously demonstrated that an infusion prepared from Pulicaria incisa (Pi) has protective, anti-inflammatory, and antioxidative effects in glial cells. However, the neuroprotective activities of Pi infusion in cultured neurons and aging mice have never been studied. In the following study, the effects of Pi infusion were explored in a hydrogen peroxide (H2O2)-induced oxidative stress model in SH-SY5Y human neuroblastoma cells. Profiling of the infusion by gas chromatography-mass spectrometry identified chlorogenic acid, quercetin, and aucubin as some of its main constituents. H2O2-induced ROS accumulation and caspase 3 activity decreased SH-SY5Y viability and were prevented upon the pretreatment of cells with Pi infusion. Additionally, the Pi infusion upregulated cellular levels and the nuclear translocation of nuclear factor erythroid 2-related factor 2 (Nrf2) as well as the phosphorylation of cyclic AMP response element-binding protein (CREB). Aging mice treated daily for 18 months with Pi infusion exhibited reduced neuronal cell death in the hippocampus as compared to age-matched controls. We, therefore, propose Pi infusion as a candidate regulator of oxidative stress in the brain.

8.
Molecules ; 26(19)2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34641603

ABSTRACT

Jojoba (Simmondsia chinensis (Link) Schneider) wax is used for various dermatological and pharmaceutical applications. Several reports have previously shown beneficial properties of Jojoba wax and extracts, including antimicrobial activity. The current research aimed to elucidate the impact of Jojoba wax on skin residential bacterial (Staphylococcus aureus and Staphylococcus epidermidis), fungal (Malassezia furfur), and virus infection (herpes simplex 1; HSV-1). First, the capacity of four commercial wax preparations to attenuate their growth was evaluated. The results suggest that the growth of Staphylococcus aureus, Staphylococcus epidermidis, and Malassezia furfur was unaffected by Jojoba in pharmacologically relevant concentrations. However, the wax significantly attenuated HSV-1 plaque formation. Next, a complete dose-response analysis of four different Jojoba varieties (Benzioni, Shiloah, Hatzerim, and Sheva) revealed a similar anti-viral effect with high potency (EC50 of 0.96 ± 0.4 µg/mL) that blocked HSV-1 plaque formation. The antiviral activity of the wax was also confirmed by real-time PCR, as well as viral protein expression by immunohistochemical staining. Chemical characterization of the fatty acid and fatty alcohol composition was performed, showing high similarity between the wax of the investigated varieties. Lastly, our results demonstrate that the observed effects are independent of simmondsin, repeatedly associated with the medicinal impact of Jojoba wax, and that Jojoba wax presence is required to gain protection against HSV-1 infection. Collectively, our results support the use of Jojoba wax against HSV-1 skin infections.


Subject(s)
Anti-Infective Agents/pharmacology , Antiviral Agents/pharmacology , Herpes Simplex/drug therapy , Herpesvirus 1, Human/drug effects , Waxes/pharmacology , Acetonitriles/pharmacology , Animals , Cell Survival/drug effects , Chlorocebus aethiops , Cyclohexanes/pharmacology , Dose-Response Relationship, Drug , Fatty Acids/chemistry , Fatty Acids/pharmacology , Fatty Alcohols/chemistry , Fatty Alcohols/pharmacology , Glucosides/pharmacology , Humans , Malassezia/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects , Staphylococcus epidermidis/drug effects , Vero Cells , Waxes/chemistry
9.
Molecules ; 26(13)2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34206320

ABSTRACT

Type 2 diabetes (T2D) is a chronic metabolic disease, which could affect the daily life of patients and increase their risk of developing other diseases. Synthetic anti-diabetic drugs usually show severe side effects. In the last few decades, plant-derived drugs have been intensively studied, particularly because of a rapid development of the instruments used in analytical chemistry. We tested the efficacy of Gundelia tournefortii L. (GT) in increasing the translocation of glucose transporter-4 (GLUT4) to the myocyte plasma membrane (PM), as a main strategy to manage T2D. In this study, GT methanol extract was sub-fractionated into 10 samples using flash chromatography. The toxicity of the fractions on L6 muscle cells, stably expressing GLUTmyc, was evaluated using the MTT assay. The efficacy with which GLUT4 was attached to the L6 PM was evaluated at non-toxic concentrations. Fraction 6 was the most effective, as it stimulated GLUT4 translocation in the absence and presence of insulin, 3.5 and 5.2 times (at 250 µg/mL), respectively. Fraction 1 and 3 showed no significant effects on GLUT4 translocation, while other fractions increased GLUT4 translocation up to 2.0 times. Gas chromatography-mass spectrometry of silylated fractions revealed 98 distinct compounds. Among those compounds, 25 were considered anti-diabetic and glucose disposal agents. These findings suggest that GT methanol sub-fractions exert an anti-diabetic effect by modulating GLUT4 translocation in L6 muscle cells, and indicate the potential of GT extracts as novel therapeutic agents for T2D.


Subject(s)
Asteraceae/chemistry , Diabetes Mellitus, Type 2/metabolism , Glucose Transporter Type 4/metabolism , Hypoglycemic Agents , Muscle Cells/metabolism , Animals , Cell Line , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/genetics , Glucose Transporter Type 4/genetics , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/isolation & purification , Hypoglycemic Agents/pharmacology , Protein Transport/drug effects , Rats
10.
OMICS ; 25(5): 294-301, 2021 05.
Article in English | MEDLINE | ID: mdl-33904794

ABSTRACT

Diabetes is a common chronic disease where therapeutics innovation is much needed. The search for novel antidiabetic molecules can be greatly facilitated by high throughput metabolomic characterization of herbal medicines. Cassia auriculata is a shrub used in Ayurvedic medicine and native to India and Sri Lanka. While C. auriculata has been used as a medicinal herb in diabetes, the molecular evidence for its antidiabetic medicinal potentials and components needs to be established. Moreover, the phytocomposition of the various plant parts is not fully known. We report a comprehensive metabolomic gas chromatography mass spectrometry study of the C. auriculata plant parts, including the leaf, flower, and bud. We identified a total of 102 primary and secondary metabolites in seven chemical groups, including amino acids (AA), carboxylic acids, nucleosides, fatty acids, among others. Interestingly, plant parts differed in their metabolomic signatures. While in the flowers and leaves nine and six AA were identified, respectively, no AA was detected in the buds. Some of the identified compounds have been previously noted for their antidiabetic, hypoglycemic, and hypolipidemic bioactivities. These findings offer a concrete metabolomic basis on the phytocomposition of individual C. auriculata plant parts. These omics data call for future research on the function of the identified compounds, and clinical studies to further evaluate their antidiabetic potentials and mechanisms of action in the clinic. Finally, we note that plant omics research offers an important avenue to inform, verify, and strengthen the evidentiary base and clinical testing of herbs with medicinal potentials.


Subject(s)
Cassia , Hypoglycemic Agents , Flowers , Metabolomics , Plant Extracts/pharmacology , Plant Leaves
11.
Sci Rep ; 10(1): 14339, 2020 08 31.
Article in English | MEDLINE | ID: mdl-32868851

ABSTRACT

Worldwide demand for tef (Eragrostis tef) as a functional food for human consumption is increasing, thanks to its nutritional benefits and gluten-free properties. As a result, tef in now grown outside its native environment in Ethiopia and thus information is required regarding plant nutrition demands in these areas, as well as resulting grain health-related composition. In the current work, two tef genotypes were grown in Israel under irrigation in two platforms, plots in the field and pots in a greenhouse, with four and five nitrogen treatments, respectively. Nutritional and health-related quality traits were analyzed, including mineral content, fatty acid composition, hydrophilic and lipophilic antioxidative capacity, total phenolic content and basic polyphenolic profile. Our results show that tef genotypes differ in their nutritional composition, e.g. higher phenolic contents in the brown compared to the white genotype. Additionally, nitrogen availability positively affected grain fatty acid composition and iron levels in both experiments, while negatively affecting total phenolics in the field trials. To conclude, nitrogen fertilization is crucial for crop growth and productivity, however it also implicates nutritional value of the grains as food. These effects should be considered when fertilizing tef with nitrogen, to optimize both crop productivity and nutritional effects.


Subject(s)
Agricultural Irrigation , Crops, Agricultural/metabolism , Edible Grain/metabolism , Nitrogen/metabolism , Nutritive Value , Crops, Agricultural/growth & development , Edible Grain/growth & development
12.
Talanta ; 219: 121333, 2020 Nov 01.
Article in English | MEDLINE | ID: mdl-32887066

ABSTRACT

Over the past two decades, whole-cell biosensors (WCBs) have been widely used in the environmental field, with only few applications proposed for use in agricultural. This study describes the development and optimization of a WCB for the detection of volatile organic compounds (VOCs) that is produced specifically by infected potato tubers. First, the effect of calcium-alginate matrix formation (beads vs. tablets) on the membrane uniformity and sensing efficiency was evaluated. Then, important parameters in the immobilization process were examined for their effect on the sensitivity to the presence of VOCs. The highest sensitivity to the target VOC was obtained by 20 min polymerization of bacterial suspension with optical density of 0.2 at 600 nm, dissolved in low-viscosity sodium alginate (1.5% w/v) and exposure to VOC at 4 °C. After optimization, the lowest limit of detection for three infection-sourced VOCs (nonanal, 3-methyl-1-butanol, and 1-octen-3-ol) was 0.17-, 2.03-, and 2.09-mg/L, respectively, and the sensor sensitivity was improved by 8.9-, 3.1- and 2-fold, respectively. Then, the new optimized immobilization protocol was implemented for the CMOS-based application, which increased the sensor sensitivity to VOC by 3-fold during real-time measurement. This is the first step in creating a sensor for real-time monitoring of crop quality by identifying changes in VOC patterns.


Subject(s)
Biosensing Techniques , Volatile Organic Compounds , Agriculture , Environmental Monitoring
13.
J Insect Physiol ; 124: 104074, 2020 07.
Article in English | MEDLINE | ID: mdl-32540467

ABSTRACT

Lipids have a key role in a variety of physiological functions in insects including energy, reproduction, growth and development. Whereas most of the required fatty acids can be synthesized endogenously, omega-3 and omega-6 polyunsaturated fatty acids (PUFA) are essential fatty acids that must be acquired through nutrition. Honey bees (Apis mellifera) obtain lipids from pollen, but different pollens vary in nutritional composition, including of PUFAs. Low floral diversity and abundance may expose bees to nutritional stress. We tested the effect of total lipids concentration and their omega-6:3 ratio on aspects of honey bee physiology: brood development, adult longevity and body fatty acids composition. All three parameters were affected by dietary lipid concentration and omega-6:3 ratio. Higher lipid concentration in diet increased brood production, and high omega-6:3 ratio increased mortality rate and decreased brood rearing. Fatty acid analysis of the bees showed that the amount of lipids and the omega-6:3 ratio in their body generally reflected the composition of the diet on which they fed. Consistent with previous findings of the importance of a balanced omega-6:3 ratio diet for learning performance, we found that such a balanced PUFA diet, with above threshold total lipid composition, is also necessary for maintaining proper colony development.


Subject(s)
Bees/metabolism , Bees/physiology , Body Composition , Fatty Acids, Omega-3/metabolism , Fatty Acids, Omega-6/metabolism , Lipid Metabolism , Animal Feed/analysis , Animals , Bees/growth & development , Body Composition/drug effects , Diet , Larva/growth & development , Larva/metabolism
14.
PLoS One ; 15(1): e0227192, 2020.
Article in English | MEDLINE | ID: mdl-31923191

ABSTRACT

BACKGROUND: Rootstock has a significant impact on plant growth and development, including fruit maturation. However, the existence of mutual interaction between scion and rootstock is often neglected. To explore the origin of different fruit quality traits in citrus, we studied the effect of rootstock and the reciprocal interaction between scion and rootstock of nine combinations; three mandarin varieties grafted on three different rootstocks. We analyzed the metabolic profile of juice via gas and liquid chromatography-mass spectrometry (GC-MS and LC-MS, respectively). Additionally, we profiled phloem sap composition in the scion and the rootstock. Quality traits of fruit and their physio-chemical characteristics were also evaluated. RESULTS: For all three cultivars, rootstock was found to affect fruit yield and biochemical fruit quality parameters (sugar and acidity) in interactions with the scions. In mandarin juice, eight of 48 compounds (two primary and six secondary) were related directly to the rootstock, and another seven (one primary and six secondary) were interactively affected by scion and rootstock. In scion and rootstock sap, six and 14 of 53 and 55 primary metabolites, respectively, were directly affected by the rootstock, while 42 and 33 were affected by rootstock interactively with scion, respectively. CONCLUSION: In this work, we show for the first time a reciprocal effect between rootstock and scion. Based on our results, the scion and rootstock interaction might be organ, distance or time dependent.


Subject(s)
Citrus/growth & development , Citrus/metabolism , Fruit and Vegetable Juices/analysis , Metabolomics/methods , Phloem/metabolism , Plant Roots/metabolism , Plant Shoots/metabolism , Ascorbic Acid/analysis , Fruit/growth & development , Israel , Metabolome , Sugars/analysis
15.
Molecules ; 24(22)2019 Nov 15.
Article in English | MEDLINE | ID: mdl-31731693

ABSTRACT

Naturally derived drugs and plant-based products are attractive commodities that are being explored for cancer treatment. This in vitro study aimed to investigate the role of Hypericum triquetrifolium (50% ethanol: 50% water) extract (HTE) treatment on apoptosis, cell cycle modulation, and cell cycle arrest in human colon cancer cell line (HCT-116). HTE induced cell death via an apoptotic process, as assayed by an Annexin V-Cy3 assay. Exposing HCT-116 cells to 0.064, 0.125, 0.25, and 0.5 mg/mL of HTE for 24 h led to 50 ± 9%, 71.6 ± 8%, 85 ± 5%, and 96 ± 1.5% apoptotic cells, respectively. HCT-116 cells treated with 0.25 and 0.5 mg/mL HTE for 3 h resulted in 38.9 ± 1.5% and 57.2 ± 3% cleavage of caspase-3-specific substrate, respectively. RT-PCR analysis revealed that the HTE extract had no effect on mRNA levels of Apaf-1 and NOXA. Moreover, the addition of 0.125 mg/mL and 0.25 mg/mL HTE for 24 h was clearly shown to attenuate the cell cycle progression machinery in HCT-116 cells. GC/MS analysis of the extract identified 21 phytochemicals that are known as apoptosis inducers and cell cycle arrest agents. All the compounds detected are novel in H. triquetrifolium. These results suggest that HTE-induced apoptosis of human colon cells is mediated primarily through the caspase-dependent pathway. Thus, HTE appears to be a potent therapeutic agent for colon cancer treatment.


Subject(s)
Antineoplastic Agents, Phytogenic , Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Colonic Neoplasms , Hypericum/chemistry , Plant Extracts , Antineoplastic Agents, Phytogenic/chemistry , Antineoplastic Agents, Phytogenic/pharmacology , Colonic Neoplasms/drug therapy , Colonic Neoplasms/metabolism , Colonic Neoplasms/pathology , HCT116 Cells , Humans , Plant Extracts/chemistry , Plant Extracts/pharmacology
16.
J Sci Food Agric ; 99(3): 1180-1189, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30047164

ABSTRACT

BACKGROUND: Olive oil, a functional food, is increasingly produced from trees irrigated with water containing high concentrations of salts. We studied the effects of irrigation-induced salinity on quality and health-related compounds in olive oil. Trees (cv Barnea) were grown in lysimeters with continuous control and monitoring of root-zone salinity. Salinity in the root zone was altered by changing irrigation solution salinity or by changing the extent of leaching. Extracted oil was analyzed for quality parameters including free fatty acid content, polyphenol, tocopherol, sterol and carotenoid levels, fatty acid (FA) profile, and antioxidative capacity. RESULTS: While not all parameters changed, fruit water percentage and fruit oil content significantly decreased with increasing exposure to salt. As salinity increased, there was a desirable rise in measured polyphenol and tocopherol levels and a contrasting undesirable reduction in a number of important compounds, including 16:1 and 18:3 FA. CONCLUSION: The possible negative effects on olive oil quality due to FA-related parameters should concern producers dependent on, or considering, irrigation with high-salinity water sources. A number of important quality parameters were differentially influenced by the method of inducing the root zone salinity, suggesting that additional environmental variables leading to oxidative responses were affected by the treatments. © 2018 Society of Chemical Industry.


Subject(s)
Olea/chemistry , Olive Oil/chemistry , Plant Oils/chemistry , Agricultural Irrigation , Antioxidants/chemistry , Antioxidants/metabolism , Fruit/chemistry , Fruit/growth & development , Fruit/metabolism , Olea/growth & development , Olea/metabolism , Olive Oil/metabolism , Plant Oils/metabolism , Polyphenols/chemistry , Polyphenols/metabolism , Quality Control , Salinity , Sodium Chloride/analysis , Sodium Chloride/metabolism
17.
J Sci Food Agric ; 98(1): 346-353, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28597472

ABSTRACT

BACKGROUND: A headspace solid-phase microextraction method with gas chromatography-mass spectrometry was used to profile the aroma volatiles of mature fruiting bodies of Morchella importuna grown in Israel. RESULTS: We tentatively identified 40 aroma compounds and seven unknown volatiles. The M. importuna aroma profile consisted of 14 aldehydes, six alcohols, 10 methyl esters, four heterocyclic/sulfur compounds, 10 carbohydrates and three other compounds (i.e. one acid, one ketone and one butyl ester). The most abundant volatiles were carbohydrates, with a total relative peak area of 29.3%, followed by alcohols (27.7%), aldehydes (21.6%), methyl esters (10.8%), heterocyclic/sulfur compounds (3.1%) and other compounds (5.8%). The 8-carbon (C8) compounds imparting typical mushroom-like aroma were very abundant in M. importuna, accounting for 27.9% of the total peak area and including, amongst others, 1-octen-3-ol (80% of total C8), octanal and 2-octenal (Z- and E-). CONCLUSION: The aroma volatile profile of morels has much in common with that of other mushrooms, with a few unique characteristics. To our knowledge, this is the first detailed report of the aroma profile of M. importuna. © 2017 Society of Chemical Industry.


Subject(s)
Ascomycota/chemistry , Volatile Organic Compounds/chemistry , Ascomycota/growth & development , Ascomycota/metabolism , Fruiting Bodies, Fungal/chemistry , Fruiting Bodies, Fungal/growth & development , Fruiting Bodies, Fungal/metabolism , Gas Chromatography-Mass Spectrometry , Israel , Odorants/analysis , Volatile Organic Compounds/metabolism
18.
Crit Rev Food Sci Nutr ; 58(11): 1888-1901, 2018 Jul 24.
Article in English | MEDLINE | ID: mdl-28350213

ABSTRACT

Morels are edible mushrooms appreciated worldwide for their savory flavor. Morels have been in use in traditional medicine for centuries, due to their health-related benefits, and current research demonstrated their anti-oxidative and anti-inflammatory bioactivities, in addition to immunostimulatory and anti-tumor properties. In spite of the high demand for morels and their increasing economic importance, their cultivation is limited, and they are either used as wild harvested or fermented in culture, for consumption as a functional food and for food-flavoring. Morel's health benefits were attributed mainly to polysaccharides as the active compounds, and to various phytochemicals, mainly phenolic compounds, tocopherols, ascorbic acid and vitamin D. Morel's nutritional composition was reported, including sugar, amino acid, fatty and organic acid and mineral profile. Information regarding Morel's flavor is limited, and while some of their taste attributes have been described, including the role of umami taste, details about their volatile aroma profile are scarce, and it was reported to include eight carbon volatiles, the main aroma volatiles typical to most mushrooms. To the best of our knowledge, this is the first review presenting morels' nutritional and phytochemical composition, health benefits and flavor, and we will review the available information in current literature regarding these aspects in light of morels phenotypic plasticity.


Subject(s)
Agaricales/chemistry , Ascomycota/chemistry , Taste , Antioxidants/analysis , Ascorbic Acid/analysis , Fermentation , Humans , Nutritive Value , Odorants , Phenols/analysis , Polysaccharides/analysis , Tocopherols/analysis , Vitamin D/analysis , Volatile Organic Compounds/analysis
19.
Plant Cell Rep ; 36(5): 731-743, 2017 May.
Article in English | MEDLINE | ID: mdl-28289884

ABSTRACT

KEY MESSAGE: Enzymes operating in the S -methylmethionine cycle make a differential contribution to methionine synthesis in seeds. In addition, mutual effects exist between the S -methylmethionine cycle and the aspartate family pathway in seeds. Methionine, a sulfur-containing amino acid, is a key metabolite in plant cells. The previous lines of evidence proposed that the S-methylmethionine (SMM) cycle contributes to methionine synthesis in seeds where methionine that is produced in non-seed tissues is converted to SMM and then transported via the phloem into the seeds. However, the relative regulatory roles of the S-methyltransferases operating within this cycle in seeds are yet to be fully understood. In the current study, we generated transgenic Arabidopsis seeds with altered expression of three HOMOCYSTEINE S-METHYLTRANSFERASEs (HMTs) and METHIONINE S-METHYLTRANSFERASE (MMT), and profiled them for transcript and metabolic changes. The results revealed that AtHMT1 and AtHMT3, but not AtHMT2 and AtMMT, are the predominant enzymes operating in seeds as altered expression of these two genes affected the levels of methionine and SMM in transgenic seeds. Their manipulations resulted in adapted expression level of genes participating in methionine synthesis through the SMM and aspartate family pathways. Taken together, our findings provide new insights into the regulatory roles of the SMM cycle and the mutual effects existing between the two methionine biosynthesis pathways, highlighting the complexity of the metabolism of methionine and SMM in seeds.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Methionine/metabolism , Seeds/metabolism , Vitamin U/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Methionine/analogs & derivatives , Methyltransferases/genetics , Methyltransferases/metabolism , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism , Seeds/genetics
20.
J Agric Food Chem ; 61(47): 11286-94, 2013 Nov 27.
Article in English | MEDLINE | ID: mdl-24219601

ABSTRACT

We examined sensory quality, total soluble solids (TSS) and acidity levels, and aroma volatiles compositions of 'Or' and 'Odem' mandarins grafted on sour orange (SO), Volkamer lemon (Volka), and US-812 rootstocks; 'Valencia' oranges grafted on SO, Volka, and ×639 rootstocks; and a new pummelo × grapefruit hybrid cv. 'Redson' grafted on SO, Volka, and macrophylla rootstocks. TSS and acidity levels of all species were lower in juice of fruits on Volka than on SO. Sensory quality evaluations revealed that 'Odem' mandarins and 'Redson' fruits grown on SO were preferred to those on Volka but the rootstocks had no notable effects on flavor perception of 'Or' mandarins and 'Valencia' oranges. Chromatographic analysis revealed that contents of aroma volatiles, especially terpenes, in homogenized segments of 'Odem' and 'Redson' but not of 'Or' and 'Valencia' were significantly lower on Volka than on SO. Overall, the effects of rootstocks on citrus fruit flavor depended on specific rootstock/scion interactions. Furthermore, the flavor of some varieties grown on Volka was inferior to that on SO because of lower TSS and acidity levels and lower aroma volatiles contents.


Subject(s)
Citrus/chemistry , Citrus/physiology , Odorants , Taste , Breeding , Odorants/analysis , Terpenes/analysis , Volatile Organic Compounds/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...