Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JID Innov ; 4(2): 100258, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38375189

ABSTRACT

Inhibition of IL-4/IL-13 signaling has dramatically improved the treatment of atopic dermatitis (AD). However, in many patients, clinical responses are slow to develop and remain modest. Indeed, some symptoms of AD are dependent on IL-31, which is only partially reduced by IL-4/IL-13 inhibition. Thus, there is an unmet need for AD treatments that concomitantly block IL-4/IL-13 and IL-31 pathways. We engineered NM26-2198, a bispecific tetravalent antibody designed to accomplish this task. In reporter cell lines, NM26-2198 concomitantly inhibited IL-4/IL-13 and IL-31 signaling with a potency comparable with that of the combination of an anti-IL-4Rα antibody (dupilumab) and an anti-IL-31 antibody (BMS-981164). In human PBMCs, NM26-2198 inhibited IL-4-induced upregulation of CD23, demonstrating functional binding to FcγRII (CD32). NM26-2198 also inhibited the secretion of the AD biomarker thymus and activation-regulated chemokine (TARC) in blood samples from healthy human donors. In male cynomolgus monkeys, NM26-2198 exhibited favorable pharmacokinetics and significantly inhibited IL-31-induced scratching at a dose of 30 mg/kg. In a repeat-dose, good laboratory practice toxicology study in cynomolgus monkeys, no adverse effects of NM26-2198 were observed at a weekly dose of 125 mg/kg. Together, these results justify the clinical investigation of NM26-2198 as a treatment for moderate-to-severe AD.

2.
MAbs ; 15(1): 2215887, 2023.
Article in English | MEDLINE | ID: mdl-37312434

ABSTRACT

Upon reformatting of an antibody to single-chain variable fragment format, a region in the former variable/constant domain interface of the heavy chain becomes accessible for preexisting (PE) anti-drug antibody (ADA) binding. The region exposed because of this reformatting contains a previously hidden hydrophobic patch. In this study, mutations are introduced in this region to reduce PE ADA reactivity and concomitantly reduce the hydrophobic patch. To enhance our understanding of the importance of individual residues in this region with respect to PE ADA reactivity, a total of 50 molecules for each of two antibodies against different tumor-associated antigens were designed, produced, and characterized by an arsenal of biophysical methods. The aim was to identify suitable mutations that reduce, or completely eliminate, PE ADA reactivity to variable fragments, without compromising biophysical and pharmacodynamic properties. Computational methods were used to pinpoint key residues to mutate and to evaluate designed molecules in silico, in order to reduce the number of molecules to produce and characterize experimentally. Mutation of two threonine residues, Thr101 and Thr146 in the variable heavy domain, proved to be critical to eliminate PE ADA reactivity. This may have important implications in optimizing early drug development for antibody fragment-based therapeutics.


Subject(s)
Drug Development , Single-Chain Antibodies , Mutation , Single-Chain Antibodies/genetics
3.
Oncoimmunology ; 10(1): 2004661, 2021.
Article in English | MEDLINE | ID: mdl-35844969

ABSTRACT

Co-stimulatory 4-1BB receptors on tumor-infiltrating T cells are a compelling target for overcoming resistance to immune checkpoint inhibitors, but initial clinical studies of 4-1BB agonist mAbs were accompanied by liver toxicity. We sought to engineer a tri-specific antibody-based molecule that stimulates intratumoral 4-1BB and blocks PD-L1/PD-1 signaling without systemic toxicity and with clinically favorable pharmacokinetics. Recombinant fusion proteins were constructed using scMATCH3 technology and humanized antibody single-chain variable fragments against PD-L1, 4-1BB, and human serum albumin. Paratope affinities were optimized using single amino acid substitutions, leading to design of the drug candidate NM21-1480. Multiple in vitro experiments evaluated pharmacodynamic properties of NM21-1480, and syngeneic mouse tumor models assessed antitumor efficacy and safety of murine analogues. A GLP multiple-dose toxicology study evaluated its safety in non-human primates. NM21-1480 inhibited PD-L1/PD-1 signaling with a potency similar to avelumab, and it potently stimulated 4-1BB signaling only in the presence of PD-L1, while exhibiting an EC50 that was largely independent of PD-L1 density. NM21-1480 exhibited high efficacy for co-activation of pre-stimulated T cells and dendritic cells. In xenograft models in syngeneic mice, NM21-1480 induced tumor regression and tumor infiltration of T cells without causing systemic T-cell activation. A GLP toxicology study revealed no evidence of liver toxicity at doses up to 140 mg/kg, and pharmacokinetic studies in non-human primates suggested a plasma half-life in humans of up to 2 weeks. NM21-1480 has the potential to overcome checkpoint resistance by co-activating tumor-infiltrating lymphocytes without liver toxicity.


Subject(s)
Antineoplastic Agents , Neoplasms , Animals , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , Antineoplastic Agents/pharmacology , B7-H1 Antigen , Humans , Immunotherapy , Mice , Programmed Cell Death 1 Receptor
4.
J Biol Chem ; 285(12): 9054-66, 2010 Mar 19.
Article in English | MEDLINE | ID: mdl-20056614

ABSTRACT

Despite their favorable pharmacokinetic properties, single-chain Fv antibody fragments (scFvs) are not commonly used as therapeutics, mainly due to generally low stabilities and poor production yields. In this work, we describe the identification and optimization of a human scFv scaffold, termed FW1.4, which is suitable for humanization and stabilization of a broad variety of rabbit antibody variable domains. A motif consisting of five structurally relevant framework residues that are highly conserved in rabbit variable domains was introduced into FW1.4 to generate a generically applicable scFv scaffold, termed FW1.4gen. Grafting of complementarity determining regions (CDRs) from 15 different rabbit monoclonal antibodies onto FW1.4 and their derivatives resulted in humanized scFvs with binding affinities in the range from 4.7 x 10(-9) to 1.5 x 10(-11) m. Interestingly, minimalistic grafting of CDRs onto FW1.4gen, without any substitutions in the framework regions, resulted in affinities ranging from 5.7 x 10(-10) to <1.8 x 10(-12) m. When compared with progenitor rabbit scFvs, affinities of most humanized scFvs were similar. Moreover, in contrast to progenitor scFvs, which were difficult to produce, biophysical properties of the humanized scFvs were significantly improved, as exemplified by generally good production yields in a generic refolding process and by apparent melting temperatures between 53 and 86 degrees C. Thus, minimalistic grafting of rabbit CDRs on the FW1.4gen scaffold presents a simple and reproducible approach to humanize and stabilize rabbit variable domains.


Subject(s)
Antibodies, Monoclonal/chemistry , Immunoglobulin Variable Region/chemistry , Protein Engineering/methods , Animals , Complementarity Determining Regions/chemistry , Endothelial Cells/cytology , Escherichia coli/metabolism , Humans , Hybridomas/metabolism , Kinetics , Mice , Protein Binding , Rabbits , Tumor Necrosis Factor-alpha/chemistry , Vascular Endothelial Growth Factor A/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...