Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 51
Filter
Add more filters










Publication year range
1.
RSC Med Chem ; 15(4): 1189-1197, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38665843

ABSTRACT

Many known chemotherapeutic anticancer agents exhibit neutropenia as a dose-limiting side effect. In this paper we suggest a prodrug concept solving this problem for camptothecin (HO-cpt). The prodrug is programmed according to Boolean "AND" logic. In the absence of H2O2 (trigger T1), e.g. in the majority of normal cells, it exists as an inactive oligomer. In cancer cells and in primed neutrophils (high H2O2), the oligomer is disrupted forming intermediate (inactive) lipophilic cationic species. These are accumulated in mitochondria (Mit) of cancer cells, where they are activated by hydrolysis at mitochondrial pH 8 (trigger T2) with formation of camptothecin. In contrast, the intermediates remain stable in neutrophils lacking Mit and therefore a source of T2. In this paper we demonstrated a proof-of-concept. Our prodrug exhibits antitumor activity both in vitro and in vivo, but is not toxic to normal cell and neutrophils in contrast to known single trigger prodrugs and the parent drug HO-cpt.

2.
J Am Chem Soc ; 145(40): 22252-22264, 2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37773090

ABSTRACT

The amount of unfolded proteins is increased in cancer cells, leading to endoplasmic reticulum (ER) stress. Therefore, cancer cells are sensitive to drugs capable of further enhancing ER stress. Examples of such drugs include the clinically approved proteosome inhibitors bortezomib and carfilzomib. Unfortunately, the known ER stress inducers exhibit dose-limiting side effects that justify the search for better, more cancer-specific drugs of this type. Herein, we report on FeC 2, which binds to unfolded proteins prevents their further processing, thereby leading to ER stress and ROS increase in cancer cells, but not in normal cells. FeC 2 exhibits low micromolar toxicity toward human acute promyelocytic leukemia HL-60, Burkitt's lymphoma BL-2, T-cell leukemia Jurkat, ovarian carcinoma A2780, lung cancer SK-MES-1, and murine lung cancer LLC1 cells. Due to the cancer-specific mode of action, 2 is not toxic in vivo up to the dose of 147 mg/kg, does not affect normal blood and bone marrow cells at the therapeutically active dose, but strongly suppresses both primary tumor growth (confirmed in Nemeth-Kellner lymphoma and LLC1 lung cancer models of murine tumor) and spreading of metastases (LLC1).

4.
Int J Nanomedicine ; 18: 3231-3246, 2023.
Article in English | MEDLINE | ID: mdl-37337577

ABSTRACT

Purpose: Magnetic separation of microbes can be an effective tool for pathogen identification and diagnostic applications to reduce the time needed for sample preparation. After peptide functionalization of superparamagnetic iron oxide nanoparticles (SPIONs) with an appropriate interface, they can be used for the separation of sepsis-associated yeasts like Candida albicans. Due to their magnetic properties, the magnetic extraction of the particles in the presence of an external magnetic field ensures the accumulation of the targeted yeast. Materials and Methods: In this study, we used SPIONs coated with 3-aminopropyltriethoxysilane (APTES) and functionalized with a peptide originating from GP340 (SPION-APTES-Pep). For the first time, we investigate whether this system is suitable for the separation and enrichment of Candida albicans, we investigated its physicochemical properties and by thermogravimetric analysis we determined the amount of peptide on the SPIONs. Further, the toxicological profile was evaluated by recording cell cycle and DNA degradation. The separation efficiency was investigated using Candida albicans in different experimental settings, and regrowth experiments were carried out to show the use of SPION-APTES-Pep as a sample preparation method for the identification of fungal infections. Conclusion: SPION-APTES-Pep can magnetically remove more than 80% of the microorganism and with a high selective host-pathogen distinction Candida albicans from water-based media and about 55% in blood after 8 minutes processing without compromising effects on the cell cycle of human blood cells. Moreover, the separated fungal cells could be regrown without any restrictions.


Subject(s)
Candida albicans , Magnetic Iron Oxide Nanoparticles , Salivary Proteins and Peptides , Humans , Candida albicans/isolation & purification , Magnetic Phenomena
5.
Appl Microbiol Biotechnol ; 107(10): 3329-3339, 2023 May.
Article in English | MEDLINE | ID: mdl-37060465

ABSTRACT

Pandemics like SARS-Cov-2 very frequently have their origin in different animals and in particular herds of camels could be a source of zoonotic diseases. This study took advantage on a highly sensitive and adaptable method for the fast and reliable detection of viral antibodies in camels using low-cost equipment. Magnetic nanoparticles (MNP) have high variability in their functionalization with different peptides and proteins. We confirm that 3-aminopropyl triethoxysilane (APTES)-coated MNP could be functionalized with viral proteins. The protein loading could be confirmed by simple loading controls using FACS-analysis (p < 0.05). Complementary combination of antigen and antibody yields in a significant signal increase could be proven by both FACS and COMPASS. However, COMPASS needs only a few seconds for the measurement. In COMPASS, the phase φn on selected critical point of the fifth higher harmonic (n = 5th). Here, positive sera display highly significant signal increase over the control or negative sera. Furthermore, a clear distinction could be made in antibody detection as an immune response to closely related viruses (SARS-CoV2 and MERS). Using modified MNPs along with COMPASS offers a fast and reliable method that is less cost intensive than current technologies and offers the possibility to be quickly adapted in case of new occurring viral infections. KEY POINTS: • COMPASS (critical offset magnetic particle spectroscopy) allows the fast detection of antibodies. • Magnetic nanoparticles can be adapted by exchange of the linked bait molecule. • Antibodies could be detected in camel sera without washing steps within seconds.


Subject(s)
COVID-19 , Middle East Respiratory Syndrome Coronavirus , Animals , Antibodies, Viral , Camelus , RNA, Viral , Middle East Respiratory Syndrome Coronavirus/genetics , SARS-CoV-2 , Spectrum Analysis , Magnetic Phenomena
6.
Nanomaterials (Basel) ; 13(2)2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36678083

ABSTRACT

Superparamagnetic iron oxide nanoparticles (SPION) are being investigated for many purposes, e.g., for the amplification of ionizing radiation and for the targeted application of therapeutics. Therefore, we investigated SPIONs coated with (3-Aminopropyle)-Triethoxysilane (SPION-APTES) for their influence on different head and neck squamous cell carcinoma (HNSCC) cell lines, as well as for their suitability as a radiosensitizer. We used 24-well microscopy and immunofluorescence microscopy for cell observation, growth curves to determine cytostatic effects, and colony formation assays to determine cytotoxicity. We found that the APTES-SPIONs were very well taken up by the HNSCC cells. They generally have a low cytotoxic effect, showing no significant difference in clonogenic survival between the control group and cells treated with 20 µg Fe/mL (p > 0.25) for all cell lines. They have a cytostatic effect on some cell lines cells (e.g., Cal33) that is visible across different radiation doses (1, 2, 8 Gy, p = 0.05). In Cal33, e.g., SPION-APTES raised the doubling time at 2 Gy from 24.53 h to 41.64 h. Importantly, these findings vary notably between the cell lines. However, they do not significantly alter the radiation effect: only one out of eight cell lines treated with SPION-APTES showed a significantly reduced clonogenic survival after ionizing radiation with 2 Gy, and only two showed significantly reduced doubling times. Thus, although the APTES-SPIONs do not qualify as a radiosensitizer, we were still able to vividly demonstrate and analyze the effect that the APTES-SPIONs have on various cell lines as a contribution to further functionalization.

7.
Bioengineering (Basel) ; 9(12)2022 Dec 15.
Article in English | MEDLINE | ID: mdl-36551012

ABSTRACT

Head and neck squamous cell carcinoma (HNSCC) is the sixth most common cancer worldwide. They are associated with alcohol and tobacco consumption, as well as infection with human papillomaviruses (HPV). Therapeutic options include radiochemotherapy, surgery or chemotherapy. Nanoparticles are becoming more and more important in medicine. They can be used diagnostically, but also therapeutically. In order to provide therapeutic alternatives in the treatment of HNSCC, the effect of citrate-coated superparamagnetic iron oxide nanoparticles (Citrate-SPIONs) and gold-coated superparamagnetic iron oxide nanoparticles (Au-SPIONs) in combination with ionizing irradiation (IR) on two HPV positive and two HPV negative HNSCC and healthy fibroblasts and keratinocytes cell lines were tested. Effects on apoptosis and necrosis were analyzed by using flow cytometry. Cell survival studies were performed with a colony formation assay. To better understand where the SPIONs interact, light microscopy images and immunofluorescence studies were performed. The HNSCC and healthy cell lines showed different responses to the investigated SPIONs. The cytotoxic effects of SPIONs, in combination with IR, are dependent on the type of SPIONs, the dose administered and the cell type treated. They are independent of HPV status. Reasons for the different cytotoxic effect are probably the different compositions of the SPIONs and the related different interaction of the SPIONs intracellularly and paramembranously, which lead to different strong formations of double strand breaks.

8.
Nat Commun ; 13(1): 7230, 2022 11 24.
Article in English | MEDLINE | ID: mdl-36433976

ABSTRACT

Magnetic nanoparticles (MNPs) have been adapted for many applications, e.g., bioassays for the detection of biomarkers such as antibodies, by controlled engineering of specific surface properties. Specific measurement of such binding states is of high interest but currently limited to highly sensitive techniques such as ELISA or flow cytometry, which are relatively inflexible, difficult to handle, expensive and time-consuming. Here we report a method named COMPASS (Critical-Offset-Magnetic-Particle-SpectroScopy), which is based on a critical offset magnetic field, enabling sensitive detection to minimal changes in mobility of MNP ensembles, e.g., resulting from SARS-CoV-2 antibodies binding to the S antigen on the surface of functionalized MNPs. With a sensitivity of 0.33 fmole/50 µl (≙7 pM) for SARS-CoV-2-S1 antibodies, measured with a low-cost portable COMPASS device, the proposed technique is competitive with respect to sensitivity while providing flexibility, robustness, and a measurement time of seconds per sample. In addition, initial results with blood serum demonstrate high specificity.


Subject(s)
COVID-19 , Magnetite Nanoparticles , Humans , Magnetite Nanoparticles/chemistry , COVID-19/diagnosis , SARS-CoV-2 , Spectrum Analysis , Antibodies, Viral , Point-of-Care Testing , Magnetic Phenomena
10.
Molecules ; 27(21)2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36364241

ABSTRACT

Nanoformulations for delivering nucleotides into cells as vaccinations as well as treatment of various diseases have recently gained great attention. Applying such formulations for a local treatment strategy, e.g., for cancer therapy, is still a challenge, for which improved delivery concepts are needed. Hence, this work focuses on the synthesis of superparamagnetic iron oxide nanoparticles (SPIONs) for a prospective "magnetofection" application. By functionalizing SPIONs with an active catechol ester (CafPFP), polyethyleneimine (PEI) was covalently bound to their surface while preserving the desired nanosized particle properties with a hydrodynamic size of 86 nm. When complexed with plasmid-DNA (pDNA) up to a weight ratio of 2.5% pDNA/Fe, no significant changes in particle properties were observed, while 95% of the added pDNA was strongly bound to the SPION surface. The transfection in A375-M cells for 48 h with low amounts (10 ng) of pDNA, which carried a green fluorescent protein (GFP) sequence, resulted in a transfection efficiency of 3.5%. This value was found to be almost 3× higher compared to Lipofectamine (1.2%) for such low pDNA amounts. The pDNA-SPION system did not show cytotoxic effects on cells for the tested particle concentrations and incubation times. Through the possibility of additional covalent functionalization of the SPION surface as well as the PEI layer, Caf-PEI-SPIONs might be a promising candidate as a magnetofection agent in future.


Subject(s)
Magnetic Iron Oxide Nanoparticles , Polyethyleneimine , Prospective Studies , Plasmids/genetics , Transfection , DNA
11.
Pharmaceutics ; 14(11)2022 Oct 31.
Article in English | MEDLINE | ID: mdl-36365174

ABSTRACT

Gram+ bacteria are very common in clinical medicine and responsible for a large number of infectious diseases. For example, Gram+ bacteria play a major role in causing bloodstream infections and sepsis. Therefore, the detection of Gram+ bacteria is of great importance for the diagnosis and treatment of infectious diseases. Furthermore, these bacteria are often present in biofilms that cover implants. Recent research work has mainly focused on the biologic activity and removal of Gram-negative bacteria or bacterial components such as lipopolysaccharides (LPS). In contrast, the effects of lipoteichoic acid (LTA) have been less well studied so the relevance of their removal from body fluids is possibly underestimated. To address this topic, we evaluated superparamagnetic iron oxide particles (SPION) carrying different peptides derived from the innate immune receptor (GP-340) for their ability to bind and remove Gram+ bacteria and LTA from different media. Our results show that, beyond S. aureus, effective agglutinating and removing of S. pneumoniae was possible. Furthermore, we were able to show for the first time that this was possible with LTA alone and that the magnetic removal of bacteria was also efficient under flow conditions. We also found that this method was able to capture Stapyhylococcus aureus from platelet concentrates, which can help to enhance the sensitivity of microbiological diagnostics, quality control measures, and blood product safety.

12.
Int J Nanomedicine ; 17: 2139-2163, 2022.
Article in English | MEDLINE | ID: mdl-35599750

ABSTRACT

Label-free detection of nanoparticles is essential for a thorough evaluation of their cellular effects. In particular, nanoparticles intended for medical applications must be carefully analyzed in terms of their interactions with cells, tissues, and organs. Since the labeling causes a strong change in the physicochemical properties and thus also alters the interactions of the particles with the surrounding tissue, the use of fluorescently labeled particles is inadequate to characterize the effects of unlabeled particles. Further, labeling may affect cellular uptake and biocompatibility of nanoparticles. Thus, label-free techniques have been recently developed and implemented to ensure a reliable characterization of nanoparticles. This review provides an overview of frequently used label-free visualization techniques and highlights recent studies on the development and usage of microscopy systems based on reflectance, darkfield, differential interference contrast, optical coherence, photothermal, holographic, photoacoustic, total internal reflection, surface plasmon resonance, Rayleigh light scattering, hyperspectral and reflectance structured illumination imaging. Using these imaging modalities, there is a strong enhancement in the reliability of experiments concerning cellular uptake and biocompatibility of nanoparticles, which is crucial for preclinical evaluations and future medical applications.


Subject(s)
Microscopy , Nanoparticles , Nanoparticles/chemistry , Reproducibility of Results , Surface Plasmon Resonance
13.
Chemistry ; 28(30): e202104420, 2022 May 25.
Article in English | MEDLINE | ID: mdl-35419888

ABSTRACT

Elevated levels of reactive oxygen species (ROS) and deficient mitochondria are two weak points of cancer cells. Their simultaneous targeting is a valid therapeutic strategy to design highly potent anticancer drugs. The remaining challenge is to limit the drug effects to cancer cells without affecting normal ones. We have previously developed three aminoferrocene (AF)-based derivatives, which are activated in the presence of elevated levels of ROS present in cancer cells with formation of electron-rich compounds able to generate ROS and reduce mitochondrial membrane potential (MMP). All of them exhibit important drawbacks including either low efficacy or high unspecific toxicity that prevents their application in vivo up to date. Herein we describe unusual AF-derivatives lacking these drawbacks. These compounds act via an alternative mechanism: they are chemically stable in the presence of ROS, generate mitochondrial ROS in cancer cells, but not normal cells and exhibit anticancer effect in vivo.


Subject(s)
Antineoplastic Agents , Mitochondria , Antineoplastic Agents/chemistry , Apoptosis , Membrane Potential, Mitochondrial , Mitochondria/metabolism , Reactive Oxygen Species/metabolism
14.
Acta Biomater ; 141: 418-428, 2022 03 15.
Article in English | MEDLINE | ID: mdl-34999260

ABSTRACT

Sepsis is a dysregulated host response of severe bloodstream infections, and given its frequency of occurrence and high mortality rate, therapeutic improvements are imperative. A reliable biomimetic strategy for the targeting and separation of bacterial pathogens in bloodstream infections involves the use of the broad-spectrum binding motif of human GP-340, a pattern-recognition receptor of the scavenger receptor cysteine rich (SRCR) superfamily that is expressed on epithelial surfaces but not found in blood. Here we show that these peptides, when conjugated to superparamagnetic iron oxide nanoparticles (SPIONs), can separate various bacterial endotoxins and intact microbes (E. coli, S. aureus, P. aeruginosa and S. marcescens) with high efficiency, especially at low and thus clinically relevant concentrations. This is accompanied by a subsequent strong depletion in cytokine release (TNF, IL-6, IL-1ß, Il-10 and IFN-γ), which could have a direct therapeutic impact since escalating immune responses complicates severe bloodstream infections and sepsis courses. SPIONs are coated with aminoalkylsilane and capture peptides are orthogonally ligated to this surface. The particles behave fully cyto- and hemocompatible and do not interfere with host structures. Thus, this approach additionally aims to dramatically reduce diagnostic times for patients with suspected bloodstream infections and accelerate targeted antibiotic therapy. STATEMENT OF SIGNIFICANCE: Sepsis is often associated with excessive release of cytokines. This aspect and slow diagnostic procedures are the major therapeutic obstacles. The use of magnetic particles conjugated with small peptides derived from the binding motif of a broad-spectrum mucosal pathogen recognition protein GP-340 provides a highly efficient scavenging platform. These peptides are not found in blood and therefore are not subject to inhibitory mechanisms like in other concepts (mannose binding lectine, aptamers, antibodies). In this work, data are shown on the broad bacterial binding spectrum, highly efficient toxin depletion, which directly reduces the release of cytokines. Host cells are not affected and antibiotics not adsorbed. The particle bound microbes can be recultured without restriction and thus be used directly for diagnostics.


Subject(s)
Sepsis , Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Bacteria/metabolism , Cytokines/metabolism , Escherichia coli/metabolism , Humans , Magnetic Phenomena , Peptides/therapeutic use , Pseudomonas aeruginosa , Sepsis/drug therapy , Staphylococcus aureus/metabolism
17.
Int J Mol Sci ; 22(8)2021 Apr 16.
Article in English | MEDLINE | ID: mdl-33923700

ABSTRACT

Hydroxyapatite- or calcium phosphate-coated iron oxide nanoparticles have a high potential for use in many biomedical applications. In this study, a co-precipitation method for the synthesis of hydroxyapatite-coated nanoparticles (SPIONHAp), was used. The produced nanoparticles have been characterized by dynamic light scattering, X-ray diffraction, vibrating sample magnetometry, Fourier transform infrared spectrometry, atomic emission spectroscopy, scanning electron microscopy, transmission electron microscopy, selected area diffraction, and energy-dispersive X-ray spectroscopy. The results showed a successful synthesis of 190 nm sized particles and their stable coating, resulting in SPIONHAp. Potential cytotoxic effects of SPIONHAp on EL4, THP-1, and Jurkat cells were tested, showing only a minor effect on cell viability at the highest tested concentration (400 µg Fe/mL). The results further showed that hydroxyapatite-coated SPIONs can induce minor TNF-α and IL-6 release by murine macrophages at a concentration of 100 µg Fe/mL. To investigate if and how such particles interact with other substances that modulate the immune response, SPIONHAp-treated macrophages were incubated with LPS (lipopolysaccharides) and dexamethasone. We found that cytokine release in response to these potent pro- and anti-inflammatory agents was modulated in the presence of SPIONHAp. Knowledge of this behavior is important for the management of inflammatory processes following in vivo applications of this type of SPIONs.


Subject(s)
Interleukin-6/metabolism , Magnetic Iron Oxide Nanoparticles/chemistry , Tumor Necrosis Factor-alpha/metabolism , Animals , Bone Marrow Cells/drug effects , Bone Marrow Cells/metabolism , Cells, Cultured , Durapatite/chemistry , Humans , Jurkat Cells , Lipopolysaccharides/toxicity , Macrophages/drug effects , Macrophages/metabolism , Magnetic Iron Oxide Nanoparticles/toxicity , Mice , Mice, Inbred C57BL , THP-1 Cells
19.
Cancers (Basel) ; 14(1)2021 Dec 31.
Article in English | MEDLINE | ID: mdl-35008371

ABSTRACT

Radiotherapy (RT) efficacy can be improved by using radiosensitizers, i.e., drugs enhancing the effect of ionizing radiation (IR). One of the side effects of RT includes damage of normal tissue in close proximity to the treated tumor. This problem can be solved by applying cancer specific radiosensitizers. N-Alkylaminoferrocene-based (NAAF) prodrugs produce reactive oxygen species (ROS) in cancer cells, but not in normal cells. Therefore, they can potentially act as cancer specific radiosensitizers. However, early NAAF prodrugs did not exhibit this property. Since functional mitochondria are important for RT resistance, we assumed that NAAF prodrugs affecting mitochondria in parallel with increasing intracellular ROS can potentially exhibit synergy with RT. We applied sequential Cu+-catalyzed alkyne-azide cycloadditions (CuAAC) to obtain a series of NAAF derivatives with the goal of improving anticancer efficacies over already existing compounds. One of the obtained prodrugs (2c) exhibited high anticancer activity with IC50 values in the range of 5-7.1 µM in human ovarian carcinoma, Burkitt's lymphoma, pancreatic carcinoma and T-cell leukemia cells retained moderate water solubility and showed cancer specificity. 2c strongly affects mitochondria of cancer cells, leading to the amplification of mitochondrial and total ROS production and thus causing cell death via necrosis and apoptosis. We observed that 2c acts as a radiosensitizer in human head and neck squamous carcinoma cells. This is the first demonstration of a synergy between the radiotherapy and NAAF-based ROS amplifiers.

20.
Nanotechnol Sci Appl ; 13: 119-130, 2020.
Article in English | MEDLINE | ID: mdl-33328727

ABSTRACT

BACKGROUND: The limitations of optical microscopy to determine the cellular localization of label-free nanoparticles prevent a solid prediction of the cellular effect of particles intended for medical applications. To avoid the strong physicochemical changes associated with fluorescent labelling, which often result in differences in cellular uptake, efficiency and toxicity of particles, novel detection techniques are required. METHODS: In the present study, we determined the intracellular content of unlabeled SPIONs by analyzing refractive index (RI)-based images from holotomographic three-dimensional (3D) microscopy and side scatter data measured by flow cytometry. The results were compared with the actual cellular SPION amount as quantified by atomic emission spectroscopy (AES). RESULTS: Live cell imaging by 3D holotomographic microscopy demonstrated cell-specific differences in intracellular nanoparticle uptake in different pancreatic cell lines. Thus, treatment of PANC-1SMAD4 (1-4) and PANC-1SMAD4 (2-6) with SPIONs resulted in a significant increase in number of areas with higher RI, whereas in PANC-1, SUIT-2 and PaCa DD183, only a minimal increase of spots with high RI was observed. The increase in areas with high RI was in accordance with the SPION content determined by quantitative iron measurements using AES. In contrast, determination of the SPION amount by flow cytometry was strongly cell type-dependent and did not allow the discrimination between intracellular and membrane-bound SPIONs. However, flow cytometry is a very rapid and reliable method to assess the cellular toxicity and allows an estimation of the cell-associated SPION content. CONCLUSION: Holotomographic 3D microscopy is a useful method to distinguish between intracellular and membrane-associated particles. Thus, it provides a valuable tool for scientists to evaluate the cellular localization and the particle load, which facilitates prediction of potential toxicity and efficiency of nanoparticles for medical applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...