Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Front Comput Neurosci ; 17: 1265958, 2023.
Article in English | MEDLINE | ID: mdl-38156040

ABSTRACT

Objective: Patients with small fiber neuropathy (SFN) suffer from neuropathic pain, which is still a therapeutic problem. Changed activation patterns of mechano-insensitive peripheral nerve fibers (CMi) could cause neuropathic pain. However, there is sparse knowledge about mechanisms leading to CMi dysfunction since it is difficult to dissect specific molecular mechanisms in humans. We used an in-silico model to elucidate molecular causes of CMi dysfunction as observed in single nerve fiber recordings (microneurography) of SFN patients. Approach: We analyzed microneurography data from 97 CMi-fibers from healthy individuals and 34 of SFN patients to identify activity-dependent changes in conduction velocity. Using the NEURON environment, we adapted a biophysical realistic preexisting CMi-fiber model with ion channels described by Hodgkin-Huxley dynamics for identifying molecular mechanisms leading to those changes. Via a grid search optimization, we assessed the interplay between different ion channels, Na-K-pump, and resting membrane potential. Main results: Changing a single ion channel conductance, Na-K-pump or membrane potential individually is not sufficient to reproduce in-silico CMi-fiber dysfunction of unchanged activity-dependent conduction velocity slowing and quicker normalization of conduction velocity after stimulation as observed in microneurography. We identified the best combination of mechanisms: increased conductance of potassium delayed-rectifier and decreased conductance of Na-K-pump and depolarized membrane potential. When the membrane potential is unchanged, opposite changes in Na-K-pump and ion channels generate the same effect. Significance: Our study suggests that not one single mechanism accounts for pain-relevant changes in CMi-fibers, but a combination of mechanisms. A depolarized membrane potential, as previously observed in patients with neuropathic pain, leads to changes in the contribution of ion channels and the Na-K-pump. Thus, when searching for targets for the treatment of neuropathic pain, combinations of several molecules in interplay with the membrane potential should be regarded.

2.
J Neural Eng ; 19(1)2022 01 25.
Article in English | MEDLINE | ID: mdl-34996054

ABSTRACT

Objective.Small area electrodes enable preferential activation of nociceptive fibers. It is debated, however, whether co-activation of large fibers still occurs for the existing electrode designs. Moreover, existing electrodes are limited to low stimulation intensities, for which behavioral and physiological responses may be considered less reliable. A recent optimization study showed that there is a potential for improving electrode performance and increase the range of possible stimulation intensities. Based on those results, the present study introduces and tests a novel planar concentric array electrode design for small fiber activation in healthy volunteers.Approach.Volunteers received electrical stimulation with the planar concentric array electrode and a regular patch electrode. Perception thresholds (PT) were estimated at the beginning and the end of the experiment. Evoked cortical potentials were recorded in blocks of 30 stimuli. For the patch, stimulation current intensity was set to two times PT, while three intensities, two, five, and ten times PT, were applied with the planar concentric array electrode. Sensation quality, numerical-rating scores, and reaction times were obtained for each PT estimation and during each block of evoked potential recordings.Main results.Stimulation with the patch electrode was characterized as dull, while stimulation with the planar concentric array electrode was characterized as sharp, with increased sharpness for increasing stimulus current intensity. Likewise, scores of the numerical rating scale were higher for the planar concentric array electrode compared to the patch and increased with increasing stimulation current intensity. Reaction times and ERP latencies were longer for the planar concentric array electrode compared to the patch.Significance.The presented novel planar concentric array electrode is a small, non-invasive, and single-use electrode that has the potential to investigate small fiber neuropathy and pain mechanisms, as it is small fiber preferential for a wide range of stimulation intensities.


Subject(s)
Nociceptors , Skin , Electric Stimulation/methods , Electrodes , Evoked Potentials/physiology , Humans , Nociceptors/physiology
3.
J Neural Eng ; 18(1)2021 02 23.
Article in English | MEDLINE | ID: mdl-33291093

ABSTRACT

Objective.Electrical preferential activation of small nociceptive fibers may be achieved with the use of specialized small area electrodes, however, the existing electrodes are limited to low stimulation intensities. As existing electrodes have been developed empirically, the present study aimed to use computational modeling and optimization techniques to investigate if changes in electrode design parameters could improve the preferential activation of small fibers.Approach.Two finite element models; one of a planar concentric and one of an intra-epidermal electrode were combined with two multi-compartmental nerve fiber models of an Aδ-fiber and an Aß-fiber. These two-step hybrid models were used for the optimization of four electrode parameters; anode area, anode-cathode distance, cathode area, and cathode protrusion. Optimization was performed using a gradient-free bounded Nelder-Mead algorithm, to maximize the current activation threshold ratio between the Aß-fiber model and the Aδ-fiber model.Main results.All electrode parameters were optimal at their lower bound, except the cathode protrusion, which was optimal a few micrometers above the location of the Aδ-fiber model. A small cathode area is essential for producing a high current density in the epidermal skin layer enabling activation of small fibers, while a small anode area and anode-cathode distance are important for the minimization of current spread to deeper tissues, making it less likely to activate large fibers. Combining each of the optimized electrode parameters improved the preferential activation of small fibers in comparison to existing electrodes, by increasing the activation threshold ratio between the two nerve fiber types. The maximum increase in the activation threshold ratio was 289% and 595% for the intra-epidermal and planar concentric design, respectively.Significance.The present study showed that electrical preferential small fiber activation can be improved by electrode design. Additionally, the results may be used for the production of an electrode that could potentially be used for clinical assessment of small fiber neuropathy.


Subject(s)
Nerve Fibers , Skin , Computer Simulation , Electric Stimulation/methods , Electrodes , Nerve Fibers/physiology
4.
J Neurophysiol ; 124(3): 883-894, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32783585

ABSTRACT

The excitability of large nerve fibers is reduced when their membrane potential is slowly depolarizing, i.e., the fibers display accommodation. The aim of this study was to assess accommodation in small (mainly Aδ) and large (Aß) cutaneous sensory nerve fibers using the perception threshold tracking (PTT) technique. Linearly increasing ramp currents (1 ms-200 ms) were used to assess the excitability of the nerve fibers by cutaneous electrical stimulation. To investigate the PPT technique's ability to preferentially activate different fiber types, topical application of lidocaine/prilocaine (EMLA) or a placebo cream was applied. By means of computational modeling, the underlying mechanisms governing the perception threshold in the two fiber types was studied. The axon models included the voltage-gated ion channels: transient TTX-sensitive sodium current, transient TTX-resistant sodium current (NaTTXr), persistent sodium current, delayed rectifier potassium channel (KDr), slow potassium channel, and hyperpolarization-activated current. Large fibers displayed accommodation, whereas small fibers did not display accommodation (P < 0.05). For the pin electrode, a significant interaction was observed between cream (EMLA or placebo) and pulse duration (P < 0.05); for the patch electrode, there was no significant interaction between cream and duration, which supports the pin electrode's preferential activation of small fibers. The results from the computational model suggested that differences in accommodation between the two fiber types may originate from selective expression of voltage-gated ion channels, particularly the transient NaTTXr and/or KDr. The PTT technique could assess the excitability changes during accommodation in different nerve fibers. Therefore, the PTT technique may be a useful tool for studying excitability in nerve fibers in both healthy and pathological conditions.NEW & NOTEWORTHY When large nerve fibers are stimulated by long, slowly increasing electrical pulses, interactive mechanisms counteract the stimulation, which is called accommodation. The perception threshold tracking technique was able to assess accommodation in both small and large fibers. The novelty of this study is that large fibers displayed accommodation, whereas small fibers did not. Additionally, the difference in accommodation between the fiber could be linked to expression of voltage-gated ion channels by means of computational modeling.


Subject(s)
Membrane Potentials/physiology , Nerve Fibers/physiology , Sensory Thresholds/physiology , Touch Perception/physiology , Voltage-Gated Sodium Channels/physiology , Adult , Electric Stimulation/methods , Female , Humans , Male , Middle Aged , Models, Theoretical , Young Adult
5.
J Neural Eng ; 17(3): 036026, 2020 06 12.
Article in English | MEDLINE | ID: mdl-32235064

ABSTRACT

OBJECTIVE: Over the recent years, several small area electrodes have been introduced as tools for preferential stimulation of small cutaneous nerve fibers. However, the performance of the electrodes is highly debated and have not previously been systematically compared. The electrodes have been developed empirically and little is known about the electrical potential they produce in the skin, and how this influences the nerve fiber activation. The objective of the present study was to develop and validate a computational model to compare the preferential stimulation of small fibers for electrodes of different designs. APPROACH: A finite element model of the skin was developed and coupled with an Aß-fiber and an Aδ-fiber multi-compartmental nerve fiber model, to describe the current spread and consequent nerve fiber activation produced by five different surface electrodes; intra-epidermal, planar concentric, pin, planar array, and patch. The model was validated through experimental assessments of the strength-duration relationship, impedance, and reaction times. MAIN RESULTS: The computational model predicted the intra-epidermal electrode to be the most preferential for small fiber activation. The intra-epidermal electrode was, however, also found to be the most sensitive to positioning relative to nerve fiber location, which may limit the practical use of the electrode. SIGNIFICANCE: The present study highlights the influence of different electrode design features on the current spread and resulting activation of cutaneous nerve fibers. Additionally, the computational model may be used for the optimization of electrode design towards even better preferential stimulation of small fibers.


Subject(s)
Nerve Fibers , Nociceptors , Electric Stimulation , Electrodes , Reaction Time , Skin
6.
Muscle Nerve ; 61(6): 796-800, 2020 06.
Article in English | MEDLINE | ID: mdl-32133655

ABSTRACT

INTRODUCTION: Cold allodynia is often seen in the acute phase of oxaliplatin treatment, but the underlying pathophysiology remains unclear. METHODS: Patients scheduled for adjuvant oxaliplatin for colorectal cancer were examined with quantitative sensory testing and nerve excitability tests at baseline and after the second or third oxaliplatin cycle at different skin temperatures. RESULTS: Seven patients were eligible for examination. All patients felt evoked pain and tingling when touching something cold after oxaliplatin infusion. Oxaliplatin decreased motor nerve superexcitability (P < .001), increased relative refractory period (P = .011), and caused neuromyotonia-like after-activity. Cooling exacerbated these changes and prolonged the accommodation half-time. DISCUSSION: The findings suggest that a combined effect of oxaliplatin and cooling facilitates nerve excitability changes and neuromyotonia-like after-activity in peripheral nerve axons. A possible mechanism is the slowing in gating of voltage-dependent fast sodium and slow potassium channels, which results in symptoms of cold allodynia.


Subject(s)
Antineoplastic Agents/adverse effects , Axons/physiology , Cold Temperature/adverse effects , Hyperalgesia/chemically induced , Motor Neurons/physiology , Oxaliplatin/adverse effects , Aged , Axons/drug effects , Colonic Neoplasms/drug therapy , Female , Follow-Up Studies , Humans , Hyperalgesia/physiopathology , Male , Middle Aged , Motor Neurons/drug effects , Prospective Studies , Treatment Outcome
7.
BMC Neurosci ; 20(1): 47, 2019 09 03.
Article in English | MEDLINE | ID: mdl-31481024

ABSTRACT

BACKGROUND: There is a need for new approaches to increase the knowledge of the membrane excitability of small nerve fibers both in healthy subjects, as well as during pathological conditions. Our research group has previously developed the perception threshold tracking technique to indirectly assess the membrane properties of peripheral small nerve fibers. In the current study, a new approach for studying membrane excitability by cooling small fibers, simultaneously with applying a slowly increasing electrical stimulation current, is evaluated. The first objective was to examine whether altered excitability during cooling could be detected by the perception threshold tracking technique. The second objective was to computationally model the underlying ionic current that could be responsible for cold induced alteration of small fiber excitability. The third objective was to evaluate whether computational modelling of cooling and electrical simulation can be used to generate hypotheses of ionic current changes in small fiber neuropathy. RESULTS: The excitability of the small fibers was assessed by the perception threshold tracking technique for the two temperature conditions, 20 °C and 32 °C. A detailed multi-compartment model was developed, including the ionic currents: NaTTXs, NaTTXr, NaP, KDr, KM, KLeak, KA, and Na/K-ATPase. The perception thresholds for the two long duration pulses (50 and 100 ms) were reduced when the skin temperature was lowered from 32 to 20 °C (p < 0.001). However, no significant effects were observed for the shorter durations (1 ms, p = 0.116; 5 ms p = 0.079, rmANOVA, Sidak). The computational model predicted that the reduction in the perception thresholds related to long duration pulses may originate from a reduction of the KLeak channel and the Na/K-ATPase. For short durations, the effect cancels out due to a reduction of the transient TTX resistant sodium current (Nav1.8). Additionally, the result from the computational model indicated that cooling simultaneously with electrical stimulation, may increase the knowledge regarding pathological alterations of ionic currents. CONCLUSION: Cooling may alter the ionic current during electrical stimulation and thereby provide additional information regarding membrane excitability of small fibers in healthy subjects and potentially also during pathological conditions.


Subject(s)
Cold Temperature , Nerve Fibers/physiology , Sensory Thresholds/physiology , Skin/innervation , Action Potentials/physiology , Electric Stimulation , Female , Humans , Male , Membrane Potentials/physiology , Models, Neurological , Time Factors , Young Adult
8.
Biophys J ; 117(2): 281-295, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31255293

ABSTRACT

Small-surface-area electrodes have successfully been used to preferentially activate cutaneous nociceptors, unlike conventional large area-electrodes, which preferentially activate large non-nociceptor fibers. Assessments of the strength-duration relationship, threshold electrotonus, and slowly increasing pulse forms have displayed different perception thresholds between large and small surface electrodes, which may indicate different excitability properties of the activated cutaneous nerves. In this study, the origin of the differences in perception thresholds between the two electrodes was investigated. It was hypothesized that different perception thresholds could be explained by the varying distributions of voltage-gated ion channels and by morphological differences between peripheral nerve endings of small and large fibers. A two-part computational model was developed to study activation of peripheral nerve fibers by different cutaneous electrodes. The first part of the model was a finite-element model, which calculated the extracellular field delivered by the cutaneous electrodes. The second part of the model was a detailed multicompartment model of an Aδ-axon as well as an Aß-axon. The axon models included a wide range of voltage-gated ion channels: NaTTXs, NaTTXr, Nap, Kdr, KM, KA, and HCN channel. The computational model reproduced the experimentally assessed perception thresholds for the three protocols, the strength-duration relationship, the threshold electrotonus, and the slowly increasing pulse forms. The results support the hypothesis that voltage-gated ion channel distributions and morphology differences between small and large fibers were sufficient to explain the difference in perception thresholds between the two electrodes. In conclusion, assessments of perception thresholds using the three protocols may be an indirect measurement of the membrane excitability, and computational models may have the possibility to link voltage-gated ion channel activation to perception threshold measurements.


Subject(s)
Computer Simulation , Ion Channels/metabolism , Action Potentials/physiology , Axons/metabolism , Electric Stimulation , Electricity , Electrodes , Ion Channel Gating , Models, Neurological , Nerve Fibers/physiology , Skin
9.
Biophys J ; 108(5): 1057-71, 2015 Mar 10.
Article in English | MEDLINE | ID: mdl-25762318

ABSTRACT

Following each action potential, C-fiber nociceptors undergo cyclical changes in excitability, including a period of superexcitability, before recovering their basal excitability state. The increase in superexcitability during this recovery cycle depends upon their immediate firing history of the axon, but also determines the instantaneous firing frequency that encodes pain intensity. To explore the mechanistic underpinnings of the recovery cycle phenomenon a biophysical model of a C-fiber has been developed. The model represents the spatial extent of the axon including its passive properties as well as ion channels and the Na/K-ATPase ion pump. Ionic concentrations were represented inside and outside the membrane. The model was able to replicate the typical transitions in excitability from subnormal to supernormal observed empirically following a conducted action potential. In the model, supernormality depended on the degree of conduction slowing which in turn depends upon the frequency of stimulation, in accordance with experimental findings. In particular, we show that activity-dependent conduction slowing is produced by the accumulation of intraaxonal sodium. We further show that the supernormal phase results from a reduced potassium current Kdr as a result of accumulation of periaxonal potassium in concert with a reduced influx of sodium through Nav1.7 relative to Nav1.8 current. This theoretical prediction was supported by data from an in vitro preparation of small rat dorsal root ganglion somata showing a reduction in the magnitude of tetrodotoxin-sensitive relative to tetrodotoxin -resistant whole cell current. Furthermore, our studies provide support for the role of depolarization in supernormality, as previously suggested, but we suggest that the basic mechanism depends on changes in ionic concentrations inside and outside the axon. The understanding of the mechanisms underlying repetitive discharges in recovery cycles may provide insight into mechanisms of spontaneous activity, which recently has been shown to correlate to a perceived level of pain.


Subject(s)
Models, Neurological , Nerve Fibers, Unmyelinated/metabolism , Potassium Channels/metabolism , Voltage-Gated Sodium Channels/metabolism , Action Potentials , Axons/metabolism , Cell Membrane Permeability , Humans , Nerve Fibers, Unmyelinated/physiology , Potassium/metabolism , Sodium/metabolism , Sodium-Potassium-Exchanging ATPase/metabolism
10.
J Neurophysiol ; 111(9): 1721-35, 2014 May.
Article in English | MEDLINE | ID: mdl-24371290

ABSTRACT

Action potential initiation and conduction along peripheral axons is a dynamic process that displays pronounced activity dependence. In patients with neuropathic pain, differences in the modulation of axonal conduction velocity by activity suggest that this property may provide insight into some of the pathomechanisms. To date, direct recordings of axonal membrane potential have been hampered by the small diameter of the fibers. We have therefore adopted an alternative approach to examine the basis of activity-dependent changes in axonal conduction by constructing a comprehensive mathematical model of human cutaneous C-fibers. Our model reproduced axonal spike propagation at a velocity of 0.69 m/s commensurate with recordings from human C-nociceptors. Activity-dependent slowing (ADS) of axonal propagation velocity was adequately simulated by the model. Interestingly, the property most readily associated with ADS was an increase in the concentration of intra-axonal sodium. This affected the driving potential of sodium currents, thereby producing latency changes comparable to those observed for experimental ADS. The model also adequately reproduced post-action potential excitability changes (i.e., recovery cycles) observed in vivo. We performed a series of control experiments replicating blockade of particular ion channels as well as changing temperature and extracellular ion concentrations. In the absence of direct experimental approaches, the model allows specific hypotheses to be formulated regarding the mechanisms underlying activity-dependent changes in C-fiber conduction. Because ADS might functionally act as a negative feedback to limit trains of nociceptor activity, we envisage that identifying its mechanisms may also direct efforts aimed at alleviating neuronal hyperexcitability in pain patients.


Subject(s)
Action Potentials , Axons/physiology , Models, Neurological , Nerve Fibers, Unmyelinated/physiology , Neural Conduction , Nociceptors/physiology , Humans
11.
Hippocampus ; 23(1): 87-99, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22996230

ABSTRACT

Highly synchronized neural firing has been discussed in relation to learning and memory, for instance sharp-wave activity in hippocampus. We were interested to study how a postsynaptic CA1 pyramidal neuron would integrate input of different levels of synchronicity. In previous work using computational modeling we studied how the integration depends on dendritic conductances. We found that the transient A-type potassium channel K(A) was able to selectively suppress input of high synchronicity. In recent years, compartmentalization of dendritic integration has been shown. We were therefore interested to study the influence of localization and pattern of synaptic input over the dendritic tree of the CA1 pyramidal neuron. We find that the selective suppression increases when synaptic inputs are placed on oblique dendrites further out from the soma. The suppression also increases along the radial axis from the apical trunk out to the end of oblique dendrites. We also find that the K(A) channel suppresses the occurrence of dendritic spikes. Moreover, recent studies have shown interaction between synaptic inputs. We therefore studied the influence of apical tuft input on the integration studied above. We find that excitatory input provides a modulatory influence reducing the capacity of K(A) to suppress synchronized activity, thus facilitating the excitatory drive of oblique dendritic input. Conversely, inhibitory tuft input increases the suppression by K(A) providing a larger control of oblique depolarizing factors on the CA1 pyramidal neuron in terms of what constitutes the most effective level of synchronicity. Furthermore, we show that the selective suppression studied above depends on the conductance of the K(A) channel. K(A) , as several other potassium channels, is modulated by several neuromodulators, for instance acetylcholine and dopamine, both of which have been discussed in relation to learning and memory. We suggest that dendritic conductances and their modulatory systems may be part of the regulation of processing of information, in particular for how network synchronicity affects learning and memory.


Subject(s)
CA1 Region, Hippocampal/physiology , Computer Simulation , Dendrites/physiology , Models, Neurological , Pyramidal Cells/physiology , Synapses/physiology , Action Potentials/physiology , Animals , CA1 Region, Hippocampal/cytology , Excitatory Postsynaptic Potentials/physiology , Humans , Membrane Potentials/physiology , Perforant Pathway/cytology , Perforant Pathway/physiology , Potassium Channels/physiology , Pyramidal Cells/ultrastructure , Sodium Channels/physiology , Time Factors
12.
PLoS One ; 7(9): e44388, 2012.
Article in English | MEDLINE | ID: mdl-23049748

ABSTRACT

A ketogenic diet is an alternative treatment of epilepsy in infants. The diet, rich in fat and low in carbohydrates, elevates the level of polyunsaturated fatty acids (PUFAs) in plasma. These substances have therefore been suggested to contribute to the anticonvulsive effect of the diet. PUFAs modulate the properties of a range of ion channels, including K and Na channels, and it has been hypothesized that these changes may be part of a mechanistic explanation of the ketogenic diet. Using computational modelling, we here study how experimentally observed PUFA-induced changes of ion channel activity affect neuronal excitability in CA1, in particular responses to synaptic input of high synchronicity. The PUFA effects were studied in two pathological models of cellular hyperexcitability associated with epileptogenesis. We found that experimentally derived PUFA modulation of the A-type K (K(A)) channel, but not the delayed-rectifier K channel, restored healthy excitability by selectively reducing the response to inputs of high synchronicity. We also found that PUFA modulation of the transient Na channel was effective in this respect if the channel's steady-state inactivation was selectively affected. Furthermore, PUFA-induced hyperpolarization of the resting membrane potential was an effective approach to prevent hyperexcitability. When the combined effect of PUFA on the K(A) channel, the Na channel, and the resting membrane potential, was simulated, a lower concentration of PUFA was needed to restore healthy excitability. We therefore propose that one explanation of the beneficial effect of PUFAs lies in its simultaneous action on a range of ion-channel targets. Furthermore, this work suggests that a pharmacological cocktail acting on the voltage dependence of the Na-channel inactivation, the voltage dependences of K(A) channels, and the resting potential can be an effective treatment of epilepsy.


Subject(s)
CA1 Region, Hippocampal/drug effects , Fatty Acids, Unsaturated/pharmacology , Membrane Potentials/drug effects , Neurons/drug effects , Potassium Channels, Voltage-Gated/antagonists & inhibitors , Synapses/drug effects , Voltage-Gated Sodium Channels/physiology , CA1 Region, Hippocampal/cytology , CA1 Region, Hippocampal/physiology , Computer Simulation , Epilepsy/drug therapy , Epilepsy/physiopathology , Humans , Infant , Ion Channel Gating/drug effects , Membrane Potentials/physiology , Models, Biological , Neurons/cytology , Neurons/physiology , Patch-Clamp Techniques , Potassium Channels, Voltage-Gated/physiology , Synapses/physiology
13.
Biophys J ; 101(8): 1871-9, 2011 Oct 19.
Article in English | MEDLINE | ID: mdl-22004740

ABSTRACT

In diseases of the brain, the distribution and properties of ion channels display deviations from healthy control subjects. We studied three cases of ion channel alteration related to epileptogenesis. The first case of ion channel alteration represents an enhanced sodium current, the second case addresses the downregulation of the transient potassium current K(A), and the third case relates to kinetic properties of K(A) in a patient with temporal lobe epilepsy. Using computational modeling and optimization, we aimed at reversing the pathological characteristics and restoring normal neural function by altering ion channel properties. We identified two key aspects of neural dysfunction in epileptogenesis: an enhanced response to synaptic input in general and to highly synchronized synaptic input in particular. In previous studies, we showed that the potassium channel K(A) played a major role in neural responses to highly synchronized input. It was therefore selected as the target upon which modulators would act. In biophysical simulations, five experimentally characterized endogenous modulations on the K(A) channel were included. Relative concentrations of these modulators were controlled by a numerical optimizer that compared model output to predefined neural output, which represented a normal physiological response. Several solutions that restored the neuron function were found. In particular, distinct subtype compositions of the auxiliary proteins Kv channel-interacting proteins 1 and dipeptidyl aminopeptidase-like protein 6 were able to restore changes imposed by the enhanced sodium conductance or suppressed K(A) conductance. Moreover, particular combinations of protein kinese C, calmodulin-dependent protein kinase II, and arachidonic acid were also able to restore these changes as well as the channel pathology found in a patient with temporal lobe epilepsy. The solutions were further analyzed for sensitivity and robustness. We suggest that the optimization procedure can be used not only for neurons, but also for other organs with excitable cells, such as the heart and pancreas where channelopathies are found.


Subject(s)
Ion Channels/metabolism , Models, Biological , Neurons/metabolism , Neurons/pathology , Arachidonic Acid/metabolism , Calcium-Calmodulin-Dependent Protein Kinase Type 2/metabolism , Dipeptidyl-Peptidases and Tripeptidyl-Peptidases/metabolism , Epilepsy, Temporal Lobe/metabolism , Epilepsy, Temporal Lobe/pathology , Humans , Nerve Tissue Proteins/metabolism , Neurons/cytology , Potassium/metabolism , Potassium Channels/metabolism , Protein Kinase C/metabolism , Sodium/metabolism
14.
Hippocampus ; 20(7): 877-87, 2010 Jul.
Article in English | MEDLINE | ID: mdl-19777555

ABSTRACT

A range of ionic currents have been suggested to be involved in distinct aspects of epileptogenesis. Based on pharmacological and genetic studies, potassium currents have been implicated, in particular the transient A-type potassium current (K(A)). Epileptogenic activity comprises a rich repertoire of characteristics, one of which is synchronized activity of principal cells as revealed by occurrences of for instance fast ripples. Synchronized activity of this kind is particularly efficient in driving target cells into spiking. In the recipient cell, this synchronized input generates large brief compound excitatory postsynaptic potentials (EPSPs). The fast activation and inactivation of K(A) lead us to hypothesize a potential role in suppression of such EPSPs. In this work, using computational modeling, we have studied the activation of K(A) by synaptic inputs of different levels of synchronicity. We find that K(A) participates particularly in suppressing inputs of high synchronicity. We also show that the selective suppression stems from the current's ability to become activated by potentials with high slopes. We further show that K(A) suppresses input mimicking the activity of a fast ripple. Finally, we show that the degree of selectivity of K(A) can be modified by changes to its kinetic parameters, changes of the type that are produced by the modulatory action of KChIPs and DPPs. We suggest that the wealth of modulators affecting K(A) might be explained by a need to control cellular excitability in general and suppression of responses to synchronicity in particular. Wealso suggest that compounds changing K(A)-kinetics may be used to pharmacologically improve epileptic status.


Subject(s)
Epilepsy/physiopathology , Excitatory Postsynaptic Potentials/physiology , Models, Neurological , Potassium Channels/physiology , Pyramidal Cells/physiology , Action Potentials/physiology , Animals , Neural Pathways/physiology , Potassium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...