Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 14(1): 6023, 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37758737

ABSTRACT

Shape-morphing robots can change their morphology to fulfill different tasks in varying environments, but existing shape-morphing capability is not embedded in a robot's body, requiring bulky supporting equipment. Here, we report an embedded shape-morphing scheme with the shape actuation, sensing, and locking, all embedded in a robot's body. We showcase this embedded scheme using three morphing robotic systems: 1) self-sensing shape-morphing grippers that can adapt to objects for adaptive grasping; 2) a quadrupedal robot that can morph its body shape for different terrestrial locomotion modes (walk, crawl, or horizontal climb); 3) an untethered robot that can morph its limbs' shape for amphibious locomotion. We also create a library of embedded morphing modules to demonstrate the versatile programmable shapes (e.g., torsion, 3D bending, surface morphing, etc.). Our embedded morphing scheme offers a promising avenue for robots to reconfigure their morphology in an embedded manner that can adapt to different environments on demand.

2.
Soft Robot ; 8(2): 213-225, 2021 04.
Article in English | MEDLINE | ID: mdl-32584186

ABSTRACT

Various actuators (e.g., pneumatics, cables, dielectric elastomers, etc.) have been utilized to actuate soft robots. Besides widely used actuators, a relatively new artificial muscle-twisted-and-coiled actuators (TCAs)-is promising for actuating centimeter-scale soft robots because they are low cost, have a large work density, and can be driven by electricity. However, existing works on TCA-actuated soft robots in general can only generate simple bending motion. The reason is that TCAs fabricated with conventional methods have to be preloaded to generate a large contraction, and thus cannot actuate soft robots properly. In this work, an upgraded technique is presented to fabricate TCAs that can deliver 48% free strokes (contraction without preloading). We first compare the static performance of TCAs with free strokes with conventional TCAs, and then characterize how will the fabrication parameters influence the TCAs' stroke and force capability. After that, we demonstrate that such TCAs can actuate centimeter-scale soft robots with programmable motions (gripping, twisting, and three-dimensional bending). Finally, we combine those motions to demonstrate a soft robotic arm that can perform a pick-and-place task. We expect that TCAs with free strokes can enable miniature soft robots with rich three-dimensional motions for both locomotion and manipulation. Because TCAs are electrically driven, we can also potentially develop untethered soft robots by carrying onboard batteries and control circuits.


Subject(s)
Motion , Robotics , Elastomers , Robotics/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...